Кто открыл алюминий

Алюминий – общая характеристика элемента, химические свойства

Кто открыл алюминий

Алюми́ний — элемент главной подгруппы III группы, третьего периода, с атомным номером 13. Алюминий – р-элемент. На внешнем энергетическом уровне атома алюминия содержится 3 электрона, которые имеют электронную конфигурацию 3s23p1. Алюминий  проявляет степень окисления +3.

Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий— лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Химические свойства алюминия

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°);O2, HNO3 (без нагревания).  Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. При разрушении оксидной плёнки алюминий выступает как активный металл-восстановитель.

1. Алюминий легко реагирует с простыми веществами-неметаллами:

4Al + 3O2 = 2Al2O3

2Al + 3Cl2 = 2AlCl3,

2Al + 3 Br2 = 2AlBr3

2Al + N2 = 2AlN

2Al + 3S = Al2S3

4Al + 3С = Al4С3

Сульфид и карбид алюминия полностью гидролизуются:

Al2S3 + 6H2O = 2Al(OH)3 + 3H2S­

Al4C3 + 12H2O = 4Al(OH)3+ 3CH4

2. Алюминий реагирует с водой

(после удаления защитной оксидной пленки):

2Al + 6H2O = 2Al(OH)3 + 3H2­

3. Алюминий вступает в реакцию со щелочами

2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2­

2(NaOH•H2O) + 2Al = 2NaAlO2 + 3H2

 Сначала растворяется защитная оксидная пленка:  Al2О3 + 2NaOH + 3H2O = 2Na[Al(OH)4].

Затем протекают реакции:  2Al + 6H2O = 2Al(OH)3 + 3H2,         NaOH + Al(OH)3 = Na[Al(OH)4],

или суммарно: 2Al + 6H2O + 2NaOH = Na[Al(OH)4] + 3Н2,

и в результате образуются алюминаты: Na[Al(OH)4] — тетрагидроксоалюминат натрия  Так как для атома алюминия в этих соединениях характерно координационное число 6, а не 4, то действительная формула тетрагидроксосоединений следующая: Na[Al(OH)4(Н2О)2]

4. Алюминий легко растворяется в соляной и разбавленной серной кислотах:

2Al + 6HCl = 2AlCl3 + 3H2­

2Al + 3H2SO4(разб) = Al2(SO4)3 + 3H2

При нагревании растворяется в кислотах — окислителях, образующих растворимые соли алюминия:

8Al + 15H2SO4(конц) = 4Al2(SO4)3 + 3H2S + 12H2O

Al + 6HNO3(конц) = Al(NO3)3 + 3NO2­ + 3H2O

5. Алюминий восстанавливает металлы из их оксидов (алюминотермия):

8Al + 3Fe3O4 = 4Al2O3 + 9Fe

2Al + Cr2O3 = Al2O3 + 2Cr

Источник: http://himege.ru/alyuminij-xarakteristika-elementa/

Алюминий

Кто открыл алюминий

АЛЮМИНИЙ, Al (от лат. alumen — название квасцов, применявшихся в древности как протрава при крашении и дублении * а. aluminium; н. Aluminium; ф. aluminium; и. aluminio), — химический элемент III группы периодической системы Менделеева, атомный номер 13, атомная масса 26,9815. Состоит из одного стабильного изотопа с массовым числом 27. Открыт датским учёным Х. Эрстедом в 1825.

Физические свойства алюминия

Алюминий — серебристо-белый лёгкий металл. Решётка алюминия кубическая гранцентрированная с параметром а = 0,40413 нм (4,0413 Е).

Алюминий высокой чистоты (99,996%) характеризуется следующими физическими свойствами: плотность (при 20°С) 2698,9 кг/м3, t плавления 660,24°С, t кипения 2500°С, теплопроводность (при 190°С) 343 Вт/м • К, удельная теплоёмкость (при 100°С) 931,98 Дж/кг • К, электропроводность по отношению к меди (при 20°С) 65,5%, коэффициент термического расширения (от 20 до 100°С) 2,39 • 10-5 град-1.

Алюминий обладает невысокими прочностью (предел прочности при растяжении 50-60 МПа) и твёрдостью (170 МПа, по Бринеллю), но высокой пластичностью (до 50%). Алюминий хорошо полируется, анодируется и имеет высокую отражательную способность (90%). Алюминий стоек к действию различных типов природных вод, азотной и органической кислот. На воздухе алюминий покрывается тонкой прочной плёнкой, предохраняющей металл от дальнейшего окисления и коррозии.

Алюминий в природе

Алюминий — один из самых распространённых (после кислорода и кремния) элементов в породах земной коры — 8,8% (по массе). Максимальное содержание алюминия отмечено в осадочных породах — 10,45% (по массе), содержание в средних, основных, кислых и ультраосновных соответственно 8,85%, 8,76%, 7,7%, 0,45% (по массе).

Известны сотни минералов, в которые он входит в виде главного или достаточно распространённого элемента. Основные носители алюминия — алюмосиликаты. Минералы с максимальным содержанием алюминия — корунд, гиббсит, бёмит, диаспор. Главный источник получения алюминия — бокситы.

Кроме того, алюминий частично извлекают из высокоглинозёмистых щелочных пород (уртиты и др.) и алунитов.

Основной особенностью геохимического поведения алюминия в эндогенных процессах является его довольно равномерное распределение в кристаллизующихся алюмосиликатах — полевых шпатах, слюдах, амфиболах и пироксенах. Для постмагматических и гидротермальных образований он не характерен. Единственным своеобразным, но достаточно редким минералом алюминия, связанным с пегматитами, является криолит Na3AlF6.

В экзогенных процессах алюминий — весьма слабый мигрант вследствие высокой гидролизуемости его солей с выпадением в осадок малорастворимой гидроокиси Al(OH)3, слабой растворимости его других соединений, высокой кристаллохимической устойчивости алюмокремнекислородных радикалов в алюмосиликатах.

Главным концентратором алюминия в экзогенных процессах является каолин, образующийся как остаточный продукт в процессе выветривания кислых, средних и основных пород. Впоследствии при размыве и переотложении каолинитовых кор выветривания алюминий попадает в осадочные породы, главным образом глины.

В особо контрастных условиях выветривания (влажные тропики, высокая температура среды) разложение в горных породах достигает стадии формирования остаточных (элювиальных) бокситов. Мало алюминия в живых организмах и гидросфере, хотя и известны отдельные организмы — концентраторы алюминия (плауны, некоторые виды моллюсков).

Вместе с тем в почвах и в некоторых водах, богатых органическим веществом, отмечается определённая миграционная подвижность алюминия в виде органо-минеральных соединений. Особая подвижность алюминия устанавливается в некоторых вулканогенно- гидротермальных ультракислых и кислых растворах. Основные генетические типы месторождений и схемы обогащения см. в ст. Алюминиевые руды, Бокситы. 

Получение

Металлический алюминий в промышленности получают электролизом раствора глинозёма в расплавленном криолите или расплаве AlCl3; А. высокой чистоты (99,996%) вырабатывают электролитическим рафинированием с помощью т.н. трёхслойного способа. Принципиально та же технология, но с использованием органических электролитов позволяет доводить чистоту рафинируемого алюминия до 99,999%.

Применение

Благодаря лёгкости, достаточной прочности, способности сплавляться со многими другими металлами и хорошей электропроводности алюминий находит широкое применение в электротехнике, а также как конструкционный материал в машиностроении, авиастроении, строительстве и др. Чистый и сверхчистый алюминий применяют в полупроводниковой технике и для покрытия разного рода зеркал.

Алюминий получил применение в ядерных реакторах в связи с относительно низким сечением поглощения нейтронов. В ёмкостях и таре из алюминия транспортируют жидкие газы (метан, кислород, водород), некоторые кислоты (азотную, уксусную), хранят пищевые продукты, воду, масла. Как легирующую добавку алюминий используют в сплавах Cu, Mg, Ti, Ni, Zn, Fe.

В ряде случаев алюминий идёт на изготовление взрывчатых веществ (алюминал, алюмотол и др.).

Источник: http://www.mining-enc.ru/a/alyuminij

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф. Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде.

Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные. В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия. В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города.

В 1919 из этого материала был создан первый самолёт.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки.

Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С.
Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла.

Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты.  Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции.

Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью.

Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру.

Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.
Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов.

Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства. Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий — это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель.

В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит.

С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Рассмотрим, как используют различные изделия из алюминия

Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.

Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.

Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.

Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.

Алюминиевый круг — это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.

Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.
Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания. Больше всего металла в овсянке, горохе, пшенице, рисе. Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.

Алюминиевый лист

Алюминиевая плита

Алюминиевые чушки

Алюминиевые уголки

Алюминиевая проволока

При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.

Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.

Источник: https://cu-prum.ru/alyuminij1.html

История появления алюминия и первые практики применения

Кто открыл алюминий
Применяемый практически во всех сферах жизни общества металл имеет относительно недолгую историю развития: впервые в 16 веке к решению проблемы его получения приступил Парацельс.

Применяемый практически во всех сферах жизни общества металл имеет относительно недолгую историю развития: впервые в 16 веке к решению проблемы его получения приступил Парацельс. Именно он назвал окись алюминия «вяжущей», то есть «alumen».

Дело Парацельса в 18 веке продолжил Андреас Маргграф, он поднял в науке вопрос о возможных свойствах алюминия, но в чистом виде выделить не смог.

Как появился первый слиток?

Хэмфри Дэви, английский ученый, в 1808 году попытался получить чистый алюминий с помощью электролиза, он же дал веществу его современное наименование. К 1825 году в Дании Ханс-Кристиан Эрстед сумел выделить хлористый алюминий, далее он получил металл, свойства которого были весьма схожи с характеристиками олова.

Первый слиток стал результатом 18-летнего труда немецкого ученого Фридриха Велера. Все последующие годы предпринимались попытки открыть дешёвые способы получения чистого алюминия.

Так как металл был приравнен по цене к традиционным драгоценным, французские промышленники поставляли его к императорскому двору для производства предметов роскоши и ювелирных украшений.

К концу 19 века американский студент и французский инженер параллельно сумели добиться дешёвого метода производства алюминия за счёт электролиза. Так как требовались большие объёмы электроэнергии, первые заводы стали строить неподалёку от водопадов.

Австралийский инженер Байер внёс значимую лепту в историю развития алюминиевой промышленности: он научился получать глинозём по экономичной технологии, которая используется и сегодня. Альфред Вильм усилил прочность алюминия, выплавив его с небольшим добавлением магния, меди и марганца.

ЭТО ИНТЕРЕСНО:  Где и как используется алюминий

К 20-му веку ежегодные объёмы производства алюминия достигли 8 тыс. тонн.

Современность: влияние алюминиевой промышленности на все сферы производства

Рассматриваемый металл является незаменимым компонентом в архитектуре, рекламном производстве, пищевой промышленности, строительстве, дизайне, медицине и пр., в частности, широкий алюминиевый пруток в продаже (http://www.alfa-sous.ru/4/czvetnoj-metalloprokat/14/krug-alyuminievyij.html)занимает лидирующие позиции по востребованности. Если рассматривать общую распространённость вещества, в промышленности больше алюминия используется лишь железо.

Достижения первооткрывателей металла получили спрос благодаря уникальным свойствам алюминия – он очень пластичный, обладает показательными параметрами ковкости. Благодаря оксидной плёнке он не боится коррозии, за счёт чего эксплуатационный срок становится однозначно долгим. Положительными свойствами являются также нетоксичность, усиленная электропроводимость, простота переработки. Благодаря появлению алюминия получили развитие самолёты и космическая индустрия.

Металл все ещё остаётся достаточно дорогим, поэтому большое значение для мировой промышленности имеет организация вторичной переработки алюминия. По всей стране в пункты приёма цветного лома население постоянно приносит вышедшие из употребления предметы домашнего обихода, посуду, проволоку, так как вознаграждение, исчисляемое за каждый килограмм, достойно внимания и трудов.

Источник: http://www.technoflax.com/istoriya-poyavleniya-alyuminiya-i-primenenie.html

Чем лучше застеклить балкон пластиком или алюминием

Чтобы превратить балкон или лоджию в полноценную жилую комнату, его следует остеклить. Сделать это можно при помощи пластиковых или же легких алюминиевых конструкций. Чтобы вы могли выбрать подходящий материал, разберем, что лучше — остекление балконов алюминием или пластиком.

Основные отличия

ПВХ и алюминий — два принципиально разных материала, используемых для остекления лоджий и балконов. Они отличаются весом, толщиной рам, стоимостью, устойчивостью к неблагоприятным внешним факторам. Чтобы понять, какой из этих вариантов лучше, следует изучить технические особенности каждого.

Практические преимущества алюминия

Алюминиевые системы обычно используются на балконах и лоджиях, которые не допускают установку тяжелых конструкций, они позволяют сделать как холодное, так и теплое остекление. Они позволяют остеклить узкие проемы за счет использования различных способов открывания: раздвижных, поворотных. Остекление балкона легким алюминием имеет целый ряд преимуществ, среди которых:

  • быстрое производство и монтаж конструкции;
  • невысокая стоимость подобных систем;
  • прочность и долговечность рам из алюминия;
  • устойчивость к коррозии, повышенным температурам и высокой влажности.

Важно отметить, что алюминиевые рамы обычно делают более тонкими, чем их пластиковые аналоги. Благодаря этой особенности подобные системы пропускают значительно больше естественного света в помещение. Эта особенность важна для тех людей, которые хотят остеклить балкон на первых этажах.

Представленные конструкции имеют и свои недостатки. К таким справедливо можно отнести высокую теплопроводность материала (рамы быстро нагреваются или промерзают при неблагоприятных погодных условиях), а также невозможность использовать алюминий для остекления лоджий выше 8-го этажа. Из-за малого веса рамы на большой высоте могут выпадать из пазов.

Преимущества ПВХ

Остекление балкона или лоджии окнами ПВХ позволяет создать в помещении комфортную температуру. Такие конструкции могут применяться на любом этаже, их нужно выбирать, если вы хотите в дальнейшем переоборудовать балкон в полноценное жилое помещение. Использование окон ПВХ имеет ряд преимуществ, среди которых:

  • хорошая звукоизоляция;
  • надежная защита помещения от сквозняков, а также осадков;
  • возможность использовать стеклопакеты разного цвета, тонированные конструкции, ударопрочные или солнцезащитные.

Стоит отдельно рассмотреть недостатки, которыми обладают стеклопакеты ПВХ. К ним традиционно относят большую ширину рамы, из-за которой такие изделия можно использовать далеко не на всех объектах, большой вес готовой конструкции, более высокую стоимость. Кроме того, изделия из ПВХ пропускают в дом меньше естественного света, чем алюминиевые аналоги.

Что выбрать для балкона или лоджии?

Как видим, однозначного ответа на вопрос, чем лучше остеклить балкон — пластиком или же алюминием, нет. Каждый из представленных вариантов имеет свои преимущества. Чтобы принять правильное решение, вам нужно учесть такие особенности:

  • Размеры конструкции. Если ваш объект позволяет устанавливать стандартные рамы, лучше выбрать ПВХ — с его помощью легче сделать теплое остекление. Если нет, нужно устанавливать алюминий.
  • Бюджет работ. Установка алюминиевых изделий обычно обходится заказчикам в разы дешевле.
  • Износоустойчивость изделий. Со временем на алюминии всегда появляются царапины, которые практически невозможно устранить. На ПВХ также образуются сколы, однако этот материал легко можно отреставрировать. Он в целом менее подвержен негативному влиянию окружающей среды.
  • Удобство в эксплуатации. При правильном монтаже оба вида систем работают хорошо и не причиняют своим владельцам каких-либо неудобств.
  • Теплоизоляция. ПВХ обеспечивает более надежную теплоизоляцию, кроме того, он лучше защищает помещение от шума и пыли. Если вы живете на оживленной улице в центре города, вам однозначно стоит выбрать ПВХ. Если ваш дом расположен на тихой улочке, лучше брать алюминий. То же самое касается и функционального предназначения балкона — если вы хотите переоборудовать его под жилую комнату, нужно будет использовать ПВХ конструкции, для других случаев подойдут обычные алюминиевые окна.

Срок службы представленных изделий приблизительно одинаков и зависит от правильности подбора типа остекления, а также качества монтажа.

Если вы не можете самостоятельно определить, какими стеклопакетами остеклить балкон, обратитесь за помощью к специалистам. Они осмотрят ваш объект, определят основные требования к этой конструкции и выберут для вас оптимальный вариант по качеству и стоимости.

Какое остекление балкона лучше: пластик, алюминий или дерево

Какое остекление балкона лучше и какие окна стоит выбрать, чтобы при эксплуатации не появилось неприятных сюрпризов? Чтобы ответить на данные крайне важные вопросы рассмотрим преимущества и недостатки всех основных вариантов остекления.

В частности рассмотрим:

Сразу отметим, что каждый из вариантов по-своему хорош и имеет определенные сильные стороны. Поэтому однозначно назвать лучшее остекление балконов нельзя, но именно для себя вы сможете подобрать оптимальный вариант.

Раздвижные алюминиевые оконные системы

В свое время для изготовления алюминиевых раздвижных окон использовали в основном профиль PROVEDAL. Испанская фирма была одной из первых, освоивших рынок постсоветских стран. Сейчас же производителей, предлагающих данный вид продукции, стало на порядок больше, но бренд PROVEDAL по популярности обогнать пока никто не может. Хотя стоит признать, что в период кризиса многие оконные компании начали использовать более дешевые аналоги, чтобы выигрывать конкуренцию в цене.

Раздвижные алюминиевые оконные системы

Преимущества алюминиевых окон

Основное преимущество раздвижных алюминиевых систем заключается в компактности. В частности створки открываются параллельно остеклению и в открытом состоянии не закрывают пол балкона. Это очень удобно и практично, особенно если балкон маленький или забит вещами.

Вторым плюсом является минимальный вес, что позволяет остеклять алюминием даже балконы со слабой несущей плитой и хлипким парапетом.
А таких в России достаточно много, так как ряд домов изначально строился с тонкой балконной плитой. Со временем же она стала еще слабее.

Ну и третье преимущество, это низкая цена, относительно других типов окон. Когда каждый рубль на счету, то экономия в 30-40% уже более, чем ощутима и заставляет смириться с некоторыми недостатками.

При заказе окон из алюминия, вы должны знать, что их можно красить. Для покраски используется порошковая смесь и термический способ нанесения, что гарантирует сохранность на протяжении многих лет. Цветные конструкции смотрятся значительно красивее, но и стоят дороже.

Оказывают подобную услугу крайне мало оконных компаний. В Москве заказать окрашенные алюминиевые системы с установкой можно в компании Остекление-Сервис (посмотреть цены на их сайте).

Цветные раздвижные алюминиевые окна

Слабые стороны и явные недостатки

Слабой стороной алюминиевого остекления можно назвать низкий уровень теплоизоляции. На балконе по-прежнему будет холодно зимой, причем буквально на 5-7 градусов больше, чем на улице. Но минусом назвать высокую теплопроводность нельзя, так как многим людям теплый балкон и не нужен, ведь он имеет свои нюансы. Тем не менее, недостатки все же есть.

В сильные холода у алюминиевых окон часто промерзает фурнитура, что делает невозможным открытие / закрытие створок. Чтобы они начали двигаться нужно их отогревать теплой водой, феном или иным образом.

За раздвижной фурнитурой нужно следить: хотя бы раз в год очищать от попавшего мусора и менять смазку на новую. Плюс она чаще и быстрее выходит из строя, чем механизмы на распашных окнах.

Раздвижные пластиковые оконные системы

Раздвижное пластиковое остекление по технологии является схожим с алюминиевым, которое мы рассмотрели выше. Разница заключается лишь в нескольких моментах:

  • для производства используется армированный ПВХ профиль;
  • устанавливаются стеклопакеты;
  • применяется более мощная фурнитура, так как вес значительно выше.

То есть, раздвижные пластиковые окна тоже открываются параллельно остеклению и очень удобны в использовании. Плюс обеспечивают хорошую теплоизоляцию и защищают от проникновения шума с улицы. В сильные морозы они промерзают так же, как и алюминиевые.

Раздвижные пластиковые окна

Из минусов можно отметить высокую стоимость, необходимость в регулярном обслуживании (вся раздвижная фурнитура капризна) и солидный вес. Ставить такие конструкции на слабые балконы не рекомендуется.

В России наиболее распространенными являются системы SLIDORS и SWS. Они не идеальны, конечно, но качество вполне приемлемое и смотрятся красиво. Если не знаете других добросовестных производителей, то имеет смысл искать оконную компанию, которая ставит именно их.

Источник: https://krovli-zabori.ru/balkony/chem-luchshe-zasteklit-balkon-plastikom-ili-alyuminiem.html

Что такое алюминий и где его применяют?

Ещё сто лет назад этот металл ценился буквально на вес золота и даже ещё дороже, а сегодня из него штампуют кухонную утварь и пивные банки.

Речь идёт, конечно, об алюминии, который постепенно по уровню использования в различных отраслях промышленности приближается к стали.

Алюминий – что это за металл?

Когда речь заходит об алюминии, первое, что приходит на ум – это необычайно малый вес металла. Действительно, его плотность составляет примерно 2,7 г/куб. см (для сравнения: плотность железа – 7,874 г/куб. см).

Кроме того, алюминий является самым распространённым из всех металлов и третьим по распространённости химическим элементом (первые два – кислород и кремний). На долю алюминия приходится около 8% массы земной коры.

Немного истории

Алюминий стал известен человечеству довольно поздно: лишь во второй половине XIX века немецкому химику Веллеру удалось выделить чистый металл из хлорида алюминия, разогрев его смесь с калием до высокой температуры. Но ещё очень долго приобрести хотя бы небольшой кусочек серебристого металла могли себе позволить лишь очень состоятельные люди и богатые музеи, так как цена килограмма алюминия превышала стоимость равного количества золота.

Достаточно вспомнить богатый подарок, который сделали британские ученые знаменитому создателю периодической таблицы Д.И. Менделееву. Они преподнесли великому русскому химику лабораторные весы, изготовленные из алюминия и золота.

Как получают алюминий?

Основной трудностью в получении алюминия из руды являлась необходимость нагревать её до очень высокой температуры, превышающей 1900 градусов Цельсия. Длительное время, вплоть до ХХ столетия, металл не представлял никакого интереса для промышленности, несмотря на все свои замечательные качества, так как промышленное производство оставалось невероятно дорогим и сложным.

Лишь после того, как были введены в действие мощные промышленные электростанции, началась эра массового использования алюминия.

Метод электролиза, требующий значительного расхода электроэнергии, был практически одновременно предложен двумя изобретателями – французом П. Эру и американцем Ч. Холлом – ещё в 1886 году. С некоторыми изменениями он используется в алюминиевой промышленности и сегодня.

Измельчённую руду растворяют в расплавленном криолите, после чего подвергают расплав электролизу при помощи графитовых или коксовых электродов.

Для получения одной тонны металла необходимо затратить примерно 15 МВт*ч электроэнергии. Много ли это? Примерно столько же электричества расходует многоэтажный стоквартирный дом за месяц. Поэтому алюминиевые комбинаты всегда располагают вблизи крупных электростанций, чаще всего возле ГЭС или АЭС.

Свойства алюминия

Достаточно высокая сложность производства алюминия с лихвой окупается его великолепными свойствами:

  • лёгким весом, почти в три раза меньшим, чем у стали, благодаря чему снижается весовая нагрузка при изготовлении из него различных конструкций;
  • превосходной пластичностью, позволяющей простой штамповкой формовать из листового металла изделия сложной формы;
  • устойчивостью к коррозии благодаря тончайшей оксидной плёнке, защищающей его поверхность от окисления;
  • великолепной электропроводностью, позволяющей изготавливать из него лёгкие и дешёвые провода;
  • отличной ковкостью, лёгкостью обработки любыми способами, причём как в нагретом, так и в холодном состоянии;
  • способностью образовывать сплавы со многими металлами;
  • отсутствием намагничивания.

Детали и элементы различных механизмов, профилированная и штампованная продукция, многочисленная кухонная утварь и предметы быта, медицинские изделия, бытовая техника и многое другое изготавливается сегодня из алюминия.

Впрочем, металл очень редко используется в чистом виде, так как его сплавы с другими металлами, как правило, обладают гораздо более ценными и нужными свойствами.

Даже небольшое количество другого металла существенно изменяет свойства алюминия.

Сегодня он широко используется в строительстве, электронной промышленности, электротехнике, авиации, автомобилестроении, энергетике, пищепроме, машиностроении и в ряде других, не менее важных отраслей.

Источник: http://www.vseznaika.org/chemiks/chto-takoe-alyuminij-i-gde-ego-primenyayut/

Металлургия алюминия. Как получают алюминий высокой чистоты? — Портал Продуктов Группы РСС

Этот металл хорошо известен уже более 2-х тысяч лет и характеризуется широким техническим применением. Для чего его можно использовать?

В промышленности алюминий в основном используется в сплавах с другими элементами, что улучшает его эксплуатационные свойства. В таком виде он представляет собой универсальный конструкционный материал с очень универсальным применением.

Среди алюминиевых сплавов можно выделить, в частности, литейные сплавы и сплавы, используемые для пластической обработки. В их состав, кроме алюминия, входят такие элементы, как: медь, магний, кремний и марганец.

Алюминиевые сплавы используют, в частности, в авиации, химической промышленности, автомобилестроении и даже в судостроении.

Алюминий широко используется в промышленности также и в чистом виде для изготовления разных предметов быта, таких как, например, зеркала, банки для напитков и продуктов питания, кухонные принадлежности или же всем известная алюминиевая фольга.

ЭТО ИНТЕРЕСНО:  Сколько весит 1 метр арматуры диаметром 12 мм

Его используют также для изготовления химической аппаратуры, электрических проводов, а даже взрывчатых веществ. Чтобы выделить этот элемент из бокситовой руды, необходимо осуществить два следующих друг за другом этапа. Первый из них – это процесс Байера, который позволяет получить из минерала оксид алюминия.

Затем это соединение подвергается электролизу, в результате чего образуется алюминий технической чистоты.

Из чего производят алюминий?

Чистый алюминий не встречается в природе из-за его способности к пассивации. Это явление заключается в окислении металла в присутствии воздуха, в результате чего на его поверхности образуется пассивный защитный слой. Алюминий покрывается слоем оксида алюминия (Al2O3) толщиной до нескольких нм. Затем, под воздействием влаги внешний слой подвергается частичному гидролизу, в результате чего дополнительно образуется гидроксид, т.е. Al(OH)3.

Алюминий входит в состав разных минеральных пород, встречающихся в природе в виде руд. Для производства чистого алюминия используется, прежде всего, глинистая бокситовая руда. Она образуется в основном в местах выветривания алюмосиликатных пород в жарком климате и содержит также соединения железа. Это порода с характерным красным или коричневым цветом, которая встречается в двух видах: силикатном и карбонатном.

Производство алюминия технической чистоты

Алюминий технической чистоты (более 99%) промышленно получают в результате двух последовательных процессов. В результате первого получают оксид алюминия (процесс Байера), а на следующем этапе проводят процесс электролитической редукции (электролиз методом Холла-Эру), благодаря которому получают чистый алюминий. Для снижения расходов, связанных с транспортировкой бокситовой руды, большинство перерабатывающих предприятий строят недалеко от шахт.

Процесс Байера

Первый этап после добычи руды заключается в ее мытье с помощью воды. Таким образом удаляют большую часть загрязнений, которые просто растворяются в воде. Затем, в обработанное водой сырье добавляют CaO, т.е. оксид кальция.

После этого его измельчают с помощью специальных трубных мельниц до момента получения зерен с очень малым диаметром, т.е. меньше 300 мкм.

Соответствующее измельчение сырья чрезвычайно важно, так как оно обеспечивает большую площадь поверхности зерен, что, в свою очередь, влияет на эффективность протекания процесса экстракции.

Следующий этап производства оксида алюминия заключается в растворении зерен при помощи водного раствора каустической соды. В Группе PCC гидроксид натрия производится методом мембранного электролиза.

Полученный таким образом продукт характеризуется очень высоким качеством и чистотой, отвечая при этом требованиям последнего издания Европейской фармакопеи. Смесь, содержащая молотые зерна и гидроксид натрия, хранится в течение нескольких часов в специальных реакторах, называемых автоклавами.

Во время протекающего процесса осаждения в реакторах поддерживаются высокое давление и повышенная температура. Таким образом, получают алюминат натрия, который затем очищают при помощи разных фильтров.

На следующем этапе очищенный раствор алюмината натрия подвергается разложению. В результате образуется натровый щелок (т.е. водный раствор каустической соды) и кристаллы гидроокиси алюминия высокой степени чистоты. Полученный в результате кристаллизации осадок отфильтровывают и промывают водой. А оставшийся натровый щелок нагревают и возвращают в процесс для повторного использования.

Последним этапом производства чистого оксида алюминия является кальцинация. Она заключается в нагревании гидроксида алюминия при температуре выше 1000oC, в результате чего происходит его разложение на Al2O3, который получают в виде чистого белого порошка. Так подготовленный оксид алюминия транспортируют в печи для получения металлического алюминия в процессе электролитической редукции.

Электролиз оксида алюминия

Следующим этапом получения чистого алюминия является проведение процесса электролиза методом Холла-Эру. В первую очередь, полученный в процессе Байера Al2O3 расплавляют с криолитом и таким образом приготовленный раствор подвергают процессу электролиза при температуре не выше 900oC.

Полученный таким образом жидкий алюминий отделяют от электролита и удаляют из электролитических ванн с помощью т.н. вакуумных сифонов. Затем сырье попадает в литейное устройство, откуда на дальнейшем этапе его вкладывают в раскаленные печи, в которых происходит процесс переработки.

Он заключается в очистке алюминия с целью достижения максимальной чистоты. В промышленных условиях алюминий может быть очищен двумя методами. Первый из них заключается в растопке алюминия и пропускании через него хлора, благодаря чему примеси связываются с хлором, образуя хлориды, которые затем удаляют из процесса.

Второй метод заключается в электролитической редукции расплавленного с медью алюминия. Полученный таким образом конечный продукт характеризуется очень высокой чистотой.

Алюминий – материал будущего

Разработка метода получения чистого алюминия из боксита с помощью процесса Байера и электролиза Холла-Эру расширила область применения этого элемента. Кроме того, сочетание высокой прочности с легкостью позволило в некоторых случаях заменить алюминием более дорогую сталь.

Устойчивость к воздействию атмосферных факторов дала возможность использовать алюминий в производстве оконных и дверных профилей.

Еще одним преимуществом алюминия является возможность подвергать его многократной вторичной переработке, благодаря чему он считается относительно дружественным окружающей среде материалом.

Подводя итог, алюминий – это универсальный материал, широко используемый в пищевой, энергетической, химической, транспортной, строительной, автомобильной и авиационной промышленностях. Учитывая его многочисленные преимущества, безусловно, это не предел возможностей его применения и в ближайшем будущем он по-прежнему будет приобретать популярность.

Источник: https://www.products.pcc.eu/ru/blog/%D0%BC%D0%B5%D1%82%D0%B0%D0%BB%D0%BB%D1%83%D1%80%D0%B3%D0%B8%D1%8F-%D0%B0%D0%BB%D1%8E%D0%BC%D0%B8%D0%BD%D0%B8%D1%8F-%D0%BA%D0%B0%D0%BA-%D0%BF%D0%BE%D0%BB%D1%83%D1%87%D0%B0%D1%8E%D1%82-%D0%B0%D0%BB/

Состав и структура алюминия

Алюминий – это самый распространенный в земной коре металл. Его относят к легким металлам. Он обладает небольшой плотностью и массой. Кроме того, у него довольно низкая температура плавления. В то же время он обладает высокой пластичностью и показывает хорошие тепло- и электропроводные характеристики.

Кристаллическая решетка алюминияСтруктура алюминия

Предел прочности чистого алюминия составляет всего 90 МПа. Но, если в расплав добавить некоторые вещества, например, медь и ряд других, то предел прочности резко вырастает до 700 МПа. Такого же результат можно достичь, применяя термическую обработку.

Алюминий, обладающий предельно высокой чистотой – 99,99% производят для использования в лабораторных целях. Для применения в промышленности применяют технически чистый алюминий. При получении алюминиевых сплавов применяют такие добавки, как – железо и кремний. Они не растворяются в расплаве алюминия, а из добавка снижает пластичность основного материала, но в то же время повышает его прочность.

Внешний вид простого вещества

Структура этого металла состоит из простейших ячеек, состоящих из четырех атомов. Такую структуру называют гранецентрической.

Проведенные расчеты показывают, что плотность чистого металла составляет 2,7 кг на метр кубический.

Свойства и характеристики

Алюминий – это металл с серебристо-белой поверхности. Как уже отмечалось, его плотность составляет 2,7 кг/м3. Температура составляет 660°C.

Его электропроводность равняется 65% от меди и ее сплавов. Алюминий и бо́льшая часть сплавов из него стойко воспринимает воздействие коррозии. Это связано с тем, что на его поверхности образуется оксидная пленка, которая и защищает основной материал от воздействия атмосферного воздуха.

В необработанном состоянии его прочность равна 60 МПа, но после добавления определенных добавок она вырастает до 700 МПа. Твердость в этом состоянии достигает 250 по НВ.

Алюминий хорошо обрабатывается давлением. Для удаления наклепа и восстановления пластичности после обработки алюминиевые детали подвергают отжигу, при этом температура должна лежать в пределах 350°C.

Получение алюминиевого расплава, как и многих других материалов, происходит после того, как к исходному металлу подвели тепловую энергию. Она может быть подведена как непосредственно в него, так и снаружи.

Температура плавления алюминия напрямую зависит от уровня его чистоты:

    1. Сверхчистый алюминий плавится при температуре 660, 3°C.
    2. При количестве алюминия 99,5% температура плавления составляет 657°C.
    3. При содержании этого металла в 99% расплав можно получить при 643°C.

Алюминиевый расплавПроцесс получения алюминия

Алюминиевый сплав может включать в свой состав различные вещества, в том числе и легирующие. Их наличие приводит к снижению температуры плавления. Например, при наличии большого количества кремния, температура может понизиться до 500°C. На самом деле понятие температуры плавления относят к чистым металлам. Сплавы не обладают какой-то постоянной температурой плавления. Этот процесс происходит в определенном диапазоне нагрева.

В материаловедении существует понятие – температура солидус и ликвидус.

Первая температура обозначает ту точку, в которой начинается плавление алюминия, а вторая, показывает, при какой температуре, сплав будет окончательно расплавлен. В промежутке между ними сплав будет находиться в кашеобразном состоянии.

Уменьшение температуры

Перед тем как приступать к плавке металла, можно выполнить определенные операции, которые позволят снизить температуру плавления. Например, иногда расплаву подвергают алюминиевый порошок. В порошкообразном состоянии металл начинает плавиться несколько быстрее.

Но при такой обработке возникает реальная опасность того, что при взаимодействии с кислородом, который содержится в атмосфере алюминиевый порошок, начнет окисляться с большим выделением тепла и образования оксидов металла, этот процесс происходит при температуре 2300 градусов.

Главное, в этот момент плавления не допустить контакта расплава и воды. Это приведет к взрыву.

Относительно низкая температура плавления алюминия позволяет проводить эту операцию в домашних условия. Надо сразу отметить, что в качестве сырья в домашней мастерской использовать порошкообразную смесь слишком опасно. Поэтому в качестве сырья применяют или чушки, или нарезанную проволоку. Если к будущему изделию нет особых требований по качеству, то для плавления можно использовать все, что изготовленного из этого металла.

Плавка алюминия в самодельном горне

При этом не особо важно, будет сырье покрыто краской или нет. Когда происходит плавление алюминия, все посторонние вещества просто выгорят и будут удалены вместе со шлаком.

Для получения качественного результата плавки необходимо использовать материалы, которые называют флюсами. Они призваны решать задачу по связыванию и удалению из расплава посторонних примесей и загрязнений.

Домашний мастер, решивший в домашних условиях выполнять плавление алюминия должен отдавать себе отчет в том, что это довольно опасный процесс. И поэтому без применения средств защиты не обойтись. В частности, должны быть использованы перчатки, фартук, очки. Дело в том, что температура расплава лежит в пределах 600 градусов. Поэтому имеет смысл использовать средства защиты, которые применяют сварщики.

Использование средств защиты при плавке алюминия

Кстати, при плавлении алюминия и использовании очищающих химикатов необходимо защищать органы дыхания от продуктов их сгорания.

Выбор формы для литья

При выборе формы для отливки алюминия домашний мастер должен понимать, а для какой цели он обрабатывает алюминий. Если будущая отливка будет предназначена для использования в качестве припоя, то использовать, какие-то специальные формы, нет необходимости. Для этого можно использовать металлический лист, на котором можно остудить расплавленный металл.

Но если возникает необходимость получения даже простой детали, то мастер должен определиться с типом формы для литья.

Форму можно изготовить из гипса. Для этого, гипс в жидком состоянии заливают в обработанную маслом форму. После того, как начнет застывать, в него устанавливают литейную модель. Для того, чтобы в форму можно было залить расплавленный металл необходимо сформировать литник.

Для этого в форму устанавливают цилиндрическую деталь. Формы бывают разъемные и нет. Процесс изготовления разъемной формы усложняется тем, что модель будет находиться в двух полуформах. После застывания их разделяют, удаляют модель и соединяют снова. Форма готова к работе.

Кокиль для литья алюминия

Для получения качественных отливок целесообразно использовать металлические формы (кокили), но изготавливать их целесообразно только в заводских условиях.

Источник: https://stankiexpert.ru/spravochnik/materialovedenie/alyuminiy.html

Алюминий: свойства химические и физические

Одними из самых удобных в обработке материалов являются металлы. Среди них также есть свои лидеры. Так, например, основные свойства алюминия известны людям уже давно. Они настолько подходят для применения в быту, что данный металл стал очень популярным. Каковы же свойства алюминия как простого вещества и как атома, рассмотрим в данной статье.

История открытия алюминия

Издавна человеку было известно соединение рассматриваемого металла — алюмокалиевые квасцы. Оно использовалось как средство, способное набухать и связывать между собой компоненты смеси, это было необходимо и при выделке кожаных изделий. О существовании в чистом виде оксида алюминия стало известно в XVIII веке, во второй его половине. Однако при этом чистое вещество получено не было.

Сумел же выделить металл из его хлорида впервые ученый Х. К. Эрстед. Именно он обработал амальгамой калия соль и выделил из смеси серый порошок, который и был алюминием в чистом виде.

Тогда же стало понятно, что химические свойства алюминия проявляются в его высокой активности, сильной восстановительной способности. Поэтому долгое время с ним никто больше не работал.

Однако в 1854 году француз Девиль смог получить слитки металла методом электролиза расплава. Этот способ актуален и по сей день. Особенно массовое производство ценного материала началось в XX веке, когда были решены проблемы получения большого количества электроэнергии на предприятиях.

На сегодняшний день данный металл — один из самых популярных и применяемых в строительстве и бытовой промышленности.

Общая характеристика атома алюминия

Если характеризовать рассматриваемый элемент по положению в периодической системе, то можно выделить несколько пунктов.

  1. Порядковый номер — 13.
  2. Располагается в третьем малом периоде, третьей группе, главной подгруппе.
  3. Атомная масса — 26,98.
  4. Количество валентных электронов — 3.
  5. Конфигурация внешнего слоя выражается формулой 3s23p1.
  6. Название элемента — алюминий.
  7. Металлические свойства выражены сильно.
  8. Изотопов в природе не имеет, существует только в одном виде, с массовым числом 27.
  9. Химический символ — AL, в формулах читается как «алюминий».
  10. Степень окисления одна, равна +3.
ЭТО ИНТЕРЕСНО:  Как можно проверить нержавейку

Химические свойства алюминия полностью подтверждаются электронным строением его атома, ведь имея большой атомный радиус и малое сродство к электрону, он способен выступать в роли сильного восстановителя, как и все активные металлы.

Алюминий как простое вещество: физические свойства

Если говорить об алюминии, как о простом веществе, то он представляет собой серебристо-белый блестящий металл. На воздухе быстро окисляется и покрывается плотной оксидной пленкой. Тоже самое происходит и при действии концентрированных кислот.

Наличие подобной особенности делает изделия из этого металла устойчивыми к коррозии, что, естественно, очень удобно для людей. Поэтому и находит такое широкое применение в строительстве именно алюминий. Свойства вещества также еще интересны тем, что данный металл очень легкий, при этом прочный и мягкий. Сочетание таких характеристик доступно далеко не каждому веществу.

Можно выделить несколько основных физических свойств, которые характерны для алюминия.

  1. Высокая степень ковкости и пластичности. Из данного металла изготовляют легкую, прочную и очень тонкую фольгу, его же прокатывают в проволоку.
  2. Температура плавления — 660 0С.
  3. Температура кипения — 2450 0С.
  4. Плотность — 2,7 г/см3.
  5. Кристаллическая решетка объемная гранецентрированная, металлическая.
  6. Тип связи — металлическая.

Физические и химические свойства алюминия определяют области его применения и использования. Если говорить о бытовых сторонах, то большую роль играют именно уже рассмотренные нами выше характеристики. Как легкий, прочный и антикоррозионный металл, алюминий применяется в самолето- и кораблестроении. Поэтому эти свойства очень важно знать.

Восстановительная способность

Восстановительные свойства алюминия хорошо прослеживаются на реакциях взаимодействия с оксидами других металлов. Он легко извлекает их из состава вещества и позволяет существовать в простом виде. Например: Cr2O3 + AL = AL2O3 + Cr.

В металлургии существует целая методика получения веществ, основанная на подобных реакциях. Она получила название алюминотермии. Поэтому в химической отрасли данный элемент используется именно для получения других металлов.

Распространение в природе

По распространенности среди других элементов-металлов алюминий занимает первое место. Его в земной коре содержится 8,8 %. Если же сравнивать с неметаллами, то место его будет третьим, после кислорода и кремния.

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико.

Самые распространенные вещества, содержащие рассматриваемый металл:

  • полевые шпаты;
  • бокситы;
  • граниты;
  • кремнезем;
  • алюмосиликаты;
  • базальты и прочие.

В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

Свойства гидроксида алюминия

Гидроксид — самое распространенное соединение, которое образует алюминий. Свойства химические его такие же, как и у самого металла, — он амфотерный. Это значит, что он способен проявлять двойственную природу, вступая в реакции как с кислотами, так и со щелочами.

Сам по себе гидроксид алюминия — это белый студенистый осадок. Получить его легко при взаимодействии соли алюминия с щелочью или гидроксидом аммония. При взаимодействии с кислотами данный гидроксид дает обычную соответствующую соль и воду. Если же реакция идет с щелочью, то формируются гидроксокомплексы алюминия, в которых его координационное число равно 4. Пример: Na[Al(OH)4] — тетрагидроксоалюминат натрия.

Источник: https://FB.ru/article/190101/alyuminiy-svoystva-himicheskie-i-fizicheskie

Алюминий и его характеристики

Алюминий – самый распространенный в земной коре металл. Он входит в состав глин, полевых шпатов, слюд и многих других минералов. Общее содержание алюминия в земной коре составляет 8% (масс.).

Алюминий – серебристо-белый (рис. 1) легкий металл. Он легко вытягивается в проволоку и прокатывается в тонкие листы.

При комнатной температуре алюминий не изменяется на воздухе, но лишь потому, что его поверхность покрыта тонкой пленкой оксида, обладающего очень сильным защитным действием.

Рис. 1. Алюминий. Внешний вид.

Атомная и молекулярная масса алюминия

Относительной молекулярная масса вещества (Mr) – это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (Ar) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии алюминий существует в виде одноатомных молекул Al, значения его атомной и молекулярной масс совпадают. Они равны 26,9815.

Изотопы алюминия

Известно, что в природе алюминий может находиться в виде одного стабильного изотопа 27Al. Массовое число равно 27. Ядро атома изотопа алюминия 27Al содержит тринадцать протонов и четырнадцать нейтронов.

Существуют радиоактивные изотопы алюминия с массовыми числами от 21-го до 42-х, среди которых наиболее долгоживущим является изотоп 26Al, период полураспада которого составляет 720 тысяч лет.

Ионы алюминия

На внешнем энергетическом уровне атома алюминия имеется три электрона, которые являются валентными:

1s22s22p63s23р 1.

В результате химического взаимодействия алюминий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Al0-3e → Al3+.

Молекула и атом алюминия

В свободном состоянии алюминий существует в виде одноатомных молекул Al. Приведем некоторые свойства, характеризующие атом и молекулу алюминия:

Энергия ионизации атома, эВ 5,99
Относительная электроотрицательность 1,61
Радиус атома, нм 0,143
Стандартная энтальпия диссоциации молекул при 25oС, кДж/моль 329,1

Сплавы алюминия

Основное применение алюминия – производство сплавов на его основе. Легирующие добавки (например, медь, кремний, магний, цинк, марганец) вводят в алюминий главным образом для повышения его прочности.

Широкое применение имеют дуралюмины, содержащие медь и магний, силумины, в которых основной добавкой служит кремний, магналий (сплав алюминия с 9,5-11,5% магния).

Алюминий – одна из наиболее распространенных добавок в сплавах на основе меди, магния, титана, никеля, цинка и железа.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/ximiya/ximicheskie-elementy/alyuminij-i-ego-xarakteristiki/

Использование алюминия: сферы применения чистого металла и его сплавов

Алюминий, как наиболее легкий и пластичный металл, обладает широкой сферой использования. Он отличается устойчивостью к коррозии, имеет высокую электропроводность, а также легко переносит резкие температурные колебания. Еще одной особенностью является при контакте с воздухом появление на его поверхности особой пленки, которая защищает металл.

Все эти, а также другие особенности послужили его активному использованию. Итак, давайте узнаем подробнее, каковы области применения алюминия.

Данный конструкционный металл имеет широкое распространение. В частности именно с его использования начали свою работу авиастроение, ракетостроение, пищевая промышленность и изготовление посуды. Благодаря своим особенностям алюминий позволяет улучшить маневренность судов за счет меньшей массы.

Конструкции из алюминия в среднем на 50% получаются легче, нежели аналогичные стальные изделия.

Отдельно стоит упомянуть способность металла проводить ток. Такая особенность позволила сделать его главным конкурентом меди. Он активно применяется при производстве микросхем и в целом в области микроэлектроники.

Наиболее популярными сферами использования можно назвать:

  • Авиастроение: насосы, двигатели, корпуса и прочие элементы;
  • Ракетостроение: как горючий компонент для ракетного топлива;
  • Судостроение: корпуса и палубные надстройки;
  • Электроника: провода, кабели, выпрямители;
  • Оборонное производство: автоматы, танки, самолеты, различные установки;
  • Строительство: лестницы, рамы, отделка;
  • Область ЖД: цистерны для нефтепродуктов, детали, рамы для вагонов;
  • Автомобилестроение: бампера, радиаторы;
  • Быт: фольга, посуда, зеркала, мелкие приборы;

Широкое распространение объясняется преимуществами металла, однако есть у него и существенный недостаток – это невысокая прочность. Чтобы минимизировать его, в металл добавляется медь и магний.

Как вы уже поняли, основное свое применение получили алюминий и его соединения в электротехнике (и просто технике), быту, промышленности, машиностроении, авиации. Теперь же мы поговорим о применении металла алюминия в строительстве.

О применении алюминия и его сплавах расскажет это видео:

Использование алюминия человеком в области строительства обуславливается его устойчивостью к коррозии. Это дает возможность изготавливать из него конструкции, которые планируется использовать в агрессивных средах, а также на открытом воздухе.

Кровельные материалы

Алюминий активно используется для производства кровли. Этот листовой материал помимо хороших декоративных, несущих и ограждающих особенностей, отличается и доступной стоимостью по сравнению с остальными кровельными материалами. При этом такая кровля не требует профилактического осмотра или ремонта, а срок ее службы превышает многие существующие материалы.

При добавлении в чистый алюминий других металлов можно получить абсолютно любые декоративные особенности. Такая кровля позволяет иметь широкую цветовую гамму, которая идеально впишется в общий стиль.

Оконные переплеты

Можно встретить алюминий среди фонарных и оконных переплетов. Если с аналогичной целью использовать древесину, то она проявит себя как ненадежный и недолговечный материал.

Сталь же быстро покроется коррозией, будет иметь большой вес переплета и неудобства в его открытии. В свою очередь алюминиевые конструкции такими недостатками не обладают.

О свойствах и использовании алюминия расскажет видеоролик ниже:

Алюминиевые панели производятся из сплавов этого металла и используются для внешней отделки домов. Они могут иметь вид обычных штампованных листов или готовых ограждающих панелей, состоящих из листов, утеплителя и облицовки. В любом случае они максимально сдерживают тепло внутри дома и, обладая небольшим весом, не несут нагрузку на фундамент.

Отдельной характеристики заслуживает применение сплава алюминия разных марок.

Сплавы получается в результате искусственного добавления к алюминию других металлов с целью получения необходимых свойств. И на сегодняшний момент существует нескончаемое количество составов таких сплавов, имеющих самое широкое применение.

  • Наиболее известной сферой их применения является авиастроение. Для производства самолетов используются сплавы, состоящие из алюминия, цинка и магния, что в результате позволяет получить сверхпрочный и надежный материал.
  • Также нередко используются сплавы алюминия с железом, титаном, никелем.

Если вы захотите самостоятельно изготовить что-либо из алюминия, то следующее видео расскажет вам о его расплавке в домашних условиях:

Источник: http://stroyres.net/metallicheskie/vidyi/tsvetnyie/alyuminiy/ispolzovanie.html

История алюминия. Описание

Алюминий – самый известный и древний металл. В виде различных глинистых соединений он был знаком человечеству с незапамятных времен. Античные историки свидетельствовали о том, что  “люмен” ( в переводе с латинского квасцы) или сульфат алюминия-калия применяли в самых разных областях деятельности: и как протраву для окрашивания тканей, и как огнезащитное средство, а также использовали  для изготовления различных бытовых изделий и украшений.

История получения и применения алюминия

В середине XIX века в Западной Европе ученые отчаянно пытались получить алюминий в чистом виде. В 1825 году датский исследователь Х.К. Эрстед первым осуществил подобный опыт, используя калий в виде амальгамы. К сожалению, тогда не удалось точно определить полученное вещество.

Однако спустя два года получением алюминия заинтересовался немецкий ученый Велер. Он использовал для восстановления металла чистый калий. Через 20 лет упорных поисков ему удалось получить чистый алюминий в виде гранул размером со спичечную головку. Алюминий оказался красивым и легким металлом, похожим на серебро.  Эти свойства алюминия и определили его высокую стоимость на тот период истории: он оценивался дороже золота. 

В 1855 г. на выставке в Париже алюминий являлся главной достопримечательностью. Ювелирные изделия из алюминия располагались по соседству с бриллиантами французской короны. Алюминий стал очень модным металлом. Его считали благородным элементом, созданным природой для создания шедевров искусства.

Поскольку физические и химические свойства алюминия были изучены слабо, ювелиры самостоятельно изобретали способы его обработки. Мягкость и податливость металла позволяла создавать им изделия любой формы, делать отпечатки замысловатых узоров, наносить разнообразные рисунки. Алюминий покрывали золотом, полировали, матировали.

Однако со временем алюминий стал выходить из моды. В середине 1860-х годов килограмм этого металла уже стоил всего около ста старых франков, по сравнению с 3 тысячами в 1854-1856 гг.

В настоящее время первые алюминиевые изделия представляют огромную ценность. К сожалению, большую часть из них почитатели моды заменили золотом, серебром и другими драгоценными сплавами и металлами.

Однако ученых изменчивая мода не остановила. В 1886 году химик Чарльз Мартин Холл стал автором дешевого способа получения алюминия в больших количествах. Он добавил и растворил в расплавленном криолите (соединении алюминия с натрием и фтором) небольшую часть окиси алюминия. Затем, поместив смесь в гранитный сосуд, пропустил через нее электрический ток.

После нескольких часов ожидания на дне сосуда он увидел блестящие «пуговицы» чистого алюминия. Работавший в то время в России австрийский инженер Карл Жозеф Байер не остался в стороне и предложил технологию получения глинозема, которая помогла сделать новый способ еще дешевле.

В результате вариант получения алюминия, разработанный Байером и Холлом, до сих пор используется в современном производстве.

Совершенствование свойств алюминия

Новый материал, который теперь можно было применять в промышленности, был всем хорош. Однако отмечалось, что чистый алюминий недостаточно прочен для некоторых областей применения.

В борьбу с этой проблемой вступил немецкий химик Альфред Вильм, который сплавил его с небольшим количеством магния, меди и марганца. Полученный сплав был настолько прочен, что в 1911 году в городке Дюрене была выпущена партия материала, названного в его честь дюралюминием. Чуть позже в 1919 году из него был выполнен первый самолет. Так алюминий с триумфом завоевал весь мир.

В настоящее время трудно назвать отрасль промышленности, обходящуюся без этого легкого серебристого металла.

Алюминий, занимающий 3 место по концентрации в земной коре после кислорода и кремния, с новой силой притягивает к себе внимание специалистов как металл будущего.

Совокупность таких его достоинств, как малая плотность, высокая тепло- и электропроводность, прочностные характеристики, а также высокая устойчивость к коррозии и технологичность, позволяют отнести алюминий к числу самых ценных материалов планеты.

Источник: https://oxi-pro.ru/istoriya-polucheniya-i-primeneniya-alyuminiya

Понравилась статья? Поделиться с друзьями:
Металлы и их обработка
-- Сайдб лев (липк) -->
Как правильно наточить коньки в домашних условиях

Закрыть
Для любых предложений по сайту: [email protected]