Почему железо ржавеет

Оцинковка ржавеет, но с этим можно бороться!

Почему железо ржавеет

Оцинковка железа методом горячего или холодного цинкования считается панацеей от ржавчины минимум на 1015 лет. Практически это происходит не всегда. С подобной проблемой сталкиваются, в частности, автомобилисты и эксплуатационники конструкций, работающих в условиях влажных, химически агрессивных сред. Почему оцинковка ржавеет?

Некоторые причины недостаточной долговечности оцинкованных покрытий

Если исключить из рассмотрения некачественность проведения самого процесса (чаще всего коррозия оцинковки характерна лишь тогда, когда гальванопокрытие производится не в специализированных условиях), то наличие ржавой оцинковки определяется несколькими факторами.

Среда соприкосновения

Неблагоприятное воздействие на сталь, оцинкованную горячим способом, производит, в частности, почва, куда помещена конструкция. Поскольку в природе реально встречается более 200 различных типов почв, эффективность горячего цинкования в почве различна, и её трудно предсказать.

Что разъедает оцинковку в почве? Основными факторами, определяющими коррозионную активность грунта, являются его влажность, уровень pH и наличие хлоридов. Необходимо учитывать также и дополнительные характеристики:

  • Степень аэрации почвы;
  • Диапазон суточных колебаний температуры;
  • Удельное электрическое сопротивление;
  • Текстуру на размер частиц грунта.

Практически установлено, что защита оцинковки от коррозии эффективнее на коричневых песчаных почвах и не так хорошо действует на серых, глинистых. Это связано с тем, что грунт с более крупными частицами быстрее отводит влагу от поверхности. Поэтому оцинкованная деталь подвергается меньшему воздействию влаги, провоцирующей развитие электрохимической коррозии.

Первым шагом к оценке характеристик долговечности оцинкованной стали в почве является классификация грунта в районе применения конструкций из оцинкованного железа.

Скорость коррозии стали в почве может составлять от менее 0,2 мкм в год в благоприятных условиях, до 20 мкм в год или более в очень агрессивных грунтах.

Таким образом, сильнокоррозионные грунты будут диктовать необходимость надежной системы защиты от коррозии, такой как более продолжительное горячее цинкование, для обеспечения долговременной защиты.

Поскольку почва изменяется даже на небольшой территории, и коррозийность грунта может сильно различаться, неправильная классификация почвы часто приводит к неудовлетворительным результатам.

Ударные воздействия

После прокатки прочность сцепления оцинкованного слоя с основным металлом проверяется по ГОСТ Р 52246-2004. Гальваническую защиту разрешается выполнять двумя способами – горячим цинкованием или нанесением железо-цинкового покрытия. При этом толщина оцинковки определяется классом покрытия. Их четыре:

  • Оцинковка посудохозяйственных изделий (толщина покрытия – не менее 70 мкм);
  • Повышенное качество (толщина покрытия 4060 мкм);
  • Покрытие 1 класса (толщина покрытия 1840 мкм);
  • Покрытие 2 класса (толщина покрытия от 10 мкм).

Непосредственно прочность цинкового покрытия оценивается результатами технологических испытаний на изгиб, регламентируемых нормами ГОСТ 14019-2003. При этом нормируется только изменение формы тестируемых образцов, но не скорость приложения деформирующего усилия.

Между тем известно, что ударный характер взаимодействия снижает прочность сцепления поверхностных покрытий на 3035%.

Таким образом, если деталь периодически подвергается механическим ударам твёрдых частиц (для автомобиля это, например, мелкий камень или гравий), то оцинкованное железо ржавеет из-за появления трещин и царапин в местах контакта.

Может ли оцинковка ржаветь сама по себе?

Может, и основным провокатором процесса является влага. Любая оцинковка в воде ведёт себя совершенно не так, как нам бы хотелось.

Как известно, металл, который лишь периодически соприкасается с водой (практически всегда имеющей достаточно высокий кислотный потенциал), фактически представляет собой макробатарейку, электроды которой имеют определённую разность потенциалов.

Если цинка в слое достаточно, то срабатывает так называемая протекторная защита, в результате которой коррозии подвергается цинк, а не железо.

Но, если поверхностный слой повреждён, то оцинкованное железо ржавеет, особенно, если после начала процесса поверхность оцинковки – влажная.

При контакте металла с водой, содержащей растворённые соли, коррозия усиливается. Образующийся оксид железа отслаивается от поверхности металла, и подвергается воздействию свежих молекул железа, которые продолжают процесс ржавления. В конечном итоге появляются большие окисленные участки, которые вызывают разрушение всей металлической структуры детали.

Белая коррозия и как с ней бороться

Процесс коррозии оцинкованного железа завершается образованием на оцинковке белой ржавчины. Она представляет собой мелоподобное вещество белого цвета, которое образует цинк, подвергающийся воздействию водорода (из воды) и кислорода (из воздуха). В результате такой реакции взаимодействия получается гидроксид цинка.

Белая ржавчина на оцинковке характерна для нового материала. Это связано с тем, что такое покрытие еще не имело возможности образовывать стабильные оксиды, поэтому водород и кислород связываются с чистым цинком. Белая ржавчина часто появляется на оцинкованном листе при его хранении, так как конденсат может попасть в зазор между отдельными листами.

В большинстве случаев белая коррозия делает защитное покрытие бесполезным. В отличие от стабильных оксидов цинка, гидроксиды цинка плохо прилипают к другим материалам. Белая ржавчина также непривлекательна с визуальной точки зрения.

Есть несколько способов предотвратить белую ржавчину:

  1. Устранить воздействие воды.
  2. Устранить образование конденсата, позволяя цинку образовывать стабильные оксиды.
  3. Использовать пассивирующие химикаты или масла.

В первом случае необходимо улучшить круговой обдув изделия воздухом. Также эффективны разумное повышение температуры покрытия или снижение уровня относительной влажности.

Разъедает оцинковку также длительное пребывания конструкции в тёплой среде, поскольку при этом интенсифицируется образование конденсата и соответственно гидроксида цинка.

Еще один метод предотвращения образования белой ржавчины заключается в том, чтобы на поверхности цинка образовывать стабильные оксиды. Они будут препятствовать образованию белой ржавчины. Для этого дают покрытию некоторое время пребывать в среде с малой влажностью.

Увеличение диоксида углерода, контактирующего с покрытием, также ускорит образование стабильных оксидов цинка.

Удаление ржавчины с оцинковки

Процедуру начинают с очистки уже замеченных участков коррозии. Эффективным способом является последующее поверхностное покрытие оцинковки пассивирующим химическим веществом или маслом.

В первом случае предотвращается окисление (хотя и на короткое время), а во втором между цинком и водой создаётся защитный барьер, который препятствует формированию слоя гидроксида цинка.

Большинство применяемых масел, однако, через короткий промежуток времени испаряются, поэтому требуется периодическое возобновление такого защитного покрытия.

Ранее для предотвращения коррозии оцинкованного железа использовали составы на основе соединений шестивалентного хрома, но сейчас такие вещества признаны токсичными и применяются крайне редко.

Чем обработать оцинковку от ржавчины?

Используются специальные преобразователи ржавчины. Для того, чтобы удалить ржавчину с оцинковки, вначале очищают поверхность, затем тщательно высушивают её, а потом, строго следуя инструкции производителя, наносят защитное средство. Комбинирование нескольких составов нежелательно, поскольку они потребуют и различной технологии нанесения, в результате которой возможно убрать ржавчину с оцинковки.

Источник: http://www.hugebuilding.ru/rzhaveet-li-ocinkovka.html

Ржавчина на металле: вред, виды коррозии

Почему железо ржавеет

Мы — продавцы металлопроката — как никто сталкивается с этим наваждением — ржавиной. И мы точно знаем вред от коррозии. В этой статье мы скажем несколько слов об этой проблеме, ее проявлениях, ее масштабах.

Ущерб, ущерб

Все видели эти оранжево-бурые или желтоватые пятна ржавчины на металлических деталях. Экономический ущерб от коррозии металлов огромен. В США и Германии подсчитанный ущерб от коррозии и затраты на борьбу с ней составляют примерно 3 % ВВП. При этом потери металла, в том числе из-за выхода из строя конструкций, изделий, оборудования, составляют до 20 % от общего объема производства стали в год. По России точные данные о потерях от коррозии не подсчитаны.

Доподлинно известно, что именно проржавевшие металлоконструкции стали причиной обрушения нескольких мостов в Соединенных Штатах, в том числе с многочисленными человеческими жертвами. Крайне неприятен и экологический вред: утечка газа, нефти при разрушении трубопроводов приводит к загрязнению окружающей среды.

Виды коррозии и ее причины

Перед тем как говорить о ржавчине на железе, кратко рассмотрим другие ее типы.

Коррозии подвержены не только металлы, но и неметаллические изделия. В этом случае коррозию еще называют «старением». Старению подвержены пластмассы, резины и другие вещества. Для бетона и  железобетона существует термин «усталость». Происходит их разрушение или ухудшение эксплуатационных характеристик из-за химического и физического воздействия окружающей среды.

Корродируют и металлические сплавы — медь, алюминий, цинк: в процессе их коррозии на поверхности изделий образуется оксидная пленка, плотно прилегающая к поверхности, что значительно замедляет дальнейшее разрушение металла (а патина на меди еще и придает ей особый шарм). Драгоценные  металлы являются таковыми не только из-за своей красоты, ценимой ювелирами, но и за счет стойкости к коррозии.

Золото и серебро до сих пор используется для покрытия особо чувствительных электронных контактов а платина применяется в космической отрасли.

Корродировать металл может в некоторых участках поверхности (местная коррозия), охватить всю поверхность (равномерная коррозия), или же разрушать металл по границам зерен (межкристаллитная коррозия). Коррозия заметно ускоряется с повышением температуры.

Типы ржавчины

В большей степени коррозии подвержено железо. С точки зрения химии ржавчина — это окислительный процесс (как и горение). Элементы возникающие при окислении в кислородной среде называются Оксиды. Можно выделить 4 основных типа.

1. Желтая ржавчина — химическая формула FeO(OH)H2O (оксид железа двухвалетный). Возникает во влажной, недонасыщенной кислородом среде. Часто встречается под водой. В природе существует в виде минерала вюстита, при этом являясь монооксидом (те содержит 1 атом кислорода).

2. Коричневая ржавчина — Fe2O3 (двойной оксид железа): растет без воды и встречается редко.

3. Черная ржавчина — Fe3O4 (оксид железа четырех валентый). Образуется при малом содержании кислорода и без воды поэтому стабильна и распространяется очень медленно. Этот оксид является ферромагнетиком (при определенных условиях обладает намагниченностью в отсутствие внешнего магнитного поля), поэтому потенциально применим для создания сверх-проводников.

4. Красная ржавчина — химическая формула Fe2O3•H2O (оксид железа трехвалентный). Возникает под воздействием кислорода и воды, самый частый тип, процесс протекает равномерно и затрагивает всю поверхность.

В отличии от всех вышеперечисленных не столь опасных для железа видов окисления этот в своей толще образует гидроксид железа, который, начиная отслаиваться, открывает для разрушения все новые слои металла. Реакция может продолжатся до полного разрушения конструкции.

 Применяется при выплавке чугуна и как краситель в пищевой  промышленности. Встречается в природе в естественном виде под названием гематид.

Несколько видов ржавления могут протекать одновременно, не особо мешая друг другу.

Химическая и электрохимическая коррозия

Железо ржавеет, если в нем есть добавки и примеси (например, углерод) и при этом контактирует с водой и кислородом. Если же в воде растворена соль (хлорида натрия и калия), реакция становится электрохимической и процесс ржавления ускоряется.

Массовое применение этих солей как в бытовой химии так и для борьбы с льдом и снегом делают электрохимическую коррозию очень распространенным и опасным явлением: потери в США от использования солей в зимний период составляют 2,5 млрд. долларов.

При одновременном воздействии воды и кислорода образуется гидроксид железа, который, в отличие от оксида, отслаивается от металла и никак его не защищает. Реакция продолжается либо до полного разрушения железа, либо пока в системе не закончится вода или кислород.

Электрохимическую коррозию могут вызывать блуждающие токи, возникающие при утечке из электрической цепи части тока в водные растворы или в почву и оттуда — в конструкции из металла.

В тех местах, где блуждающие токи выходят из металлоконструкций обратно в воду или в почву, происходит разрушение металлов. Особенно часто блуждающие токи возникают в местах движения наземного электротранспорта (например, трамваев и ж/д локомотивов на электрической тяге).

Всего за год блуждающие токи силой в 1А способны растворить железа — 9,1 кг, цинка — 10,7 кг, свинца — 33,4 кг.

Во второй части статьи мы расскажем, как вы можете защитить свои металлоконструкции от этой напасти или победить ее, если она уже атакует.

Источник: https://www.1metallobaza.ru/blog/kak-my-stradaem-ot-rzhavchiny

Ржавчина съела железо?

Почему железо ржавеет

Опасный враг – ржавчина! Как металл ни крепок ржавчина все равно его одолеет. Послушайте про это одну историю. В стародавние времена один незадачливый король приказал про запас спрятать в сырые подвалы крепости много разнообразного оружия: стальные мечи, ружья, пушки, пушечные ядра. Только порох туда не велел класть, чтобы не отсырел. А с железом, мол, ничего не случится. По счастью, войны долго не было, и пролежало оружие в подвале много лет.

Собрался король на войну и приказал вооружить молодцов-новобранцев. Отпели тяжелые двери, вынесли из подвала боевые мечи – смотрят, а они все ржавые. Начали чистить – мечи сделались тоньше кухонных ножей. Куда такие годятся! Достали ружья – те тоже были ржавыми.

ЭТО ИНТЕРЕСНО:  Как определить черный металл

Из таких пальнешь – в руках разорвутся. Дошла очередь до пушек. С ядрами. Стали с них ржавчину сдирать. До того дочистили, что ядра величиной с арбуз сделались меньше картофелины. Как такими пушки заряжать? Велики им теперь пушки, не по размеру.

Пришлось отменить поход! Подвела сырость, влага.

А эта история приключилась недавно. Шел по льду трактор и угодил в занесенную снегом полынью. Тракториста удалось спасти, трактор же пошел ко дну. Только через год сумели поднять тяжелую машину. Долго очищал от ржавчины, а завести мотор так и не удалось, пока многие его заржавевшие в воде части не заменили новыми.

Где еще ржавеет железо?

Если бы железо ржавело только в воде! Но металл ржавеет даже в жаркой пустыне. Кругом – сколько ни ищи – капли воды не найдешь. Но в воздухе всегда есть крошечные, совсем не заметные частички влаги. И этой малости достаточно, чтобы металл понемногу стал ржаветь. А в сыром климате он, понятно, разрушается куда быстрее.

Сколько же всего железа уничтожает ржавчина? Ответ готов. За десять лет ржавчина съедает столько металла, сколько его вырабатывают за год все металлургические заводы мира. Оказывается, ржавчина съедает миллионы тонн металла! Вот люди издавна и объявили ей войну! Как вы от дождика спасаетесь? Правильно, надеваете резиновые сапожки и плащи, а еще лучше спрячетесь под крышу. Вот и с металлом поступают также. Машины, станки прячут под навесы, под крыши цехов.

Ржавчина и защита металла от коррозии

Прокладывают газопровод, нефтепровод, водопровод – на трубы надевают непромокаемый плащ – обертывают их просмоленной тканью или бумагой.

А автомобили, корабли? Они ведь не только для красоты покрашены нарядными, яркими красками. Хоть и тонок слой краски, но от сырости, а значит, и от ржавчины защищает неплохо. Для этого же красят и мосты, и вагоны, и корабли, и крыши

Но защищать металл может не только краска, железо могут покрывать тонким слоем другого, более стойкого металла – цинка. И крыша сразу становится долговечнее. Консервные банки тоже железные – жестяные. Тут на железо нанесено тонким слоем расплавленное олово.

Много есть и других способов защиты металла от ржавчины, а ученые ищут новые, более надежные.

Источник: https://partnerkis.ru/pochemu-rzhavchina-sela-perochinnyiy-nozhik/

Почему ржавеет металл — Справочник металлиста

Давайте вспомним, откуда берётся железо или, например, алюминий. Правильно, их выплавляют из руды — железной, марганцевой, магниевой, алюминиевой и др. Металлы в рудах содержатся в основном в виде оксидов, гидроксидов, карбонатов, сульфидов, то есть в виде химических соединений с кислородом, водой, серой и пр.

В природе в металлическом, или свободном, состоянии в основном можно встретить лишь золото, платину, иногда серебро. Эти металлы устойчивы, то есть не стремятся (или слабо стремятся) образовывать химические соединения. Наверное, по этой причине они получили название благородных.

Что же до подавляющего большинства металлов, то, чтобы они находились в свободном состоянии, их надо восстановить из природных рудных соединений, то есть выплавить. Выходит, выплавляя металл, мы переводим его из устойчивого состояния в неустойчивое.

Вот он и стремится вернуться в исходное состояние — окислиться. Это и есть коррозия — естественный для металлов процесс разрушения при взаимодействии с окружающей средой. Частный случай коррозии — ржавление — образование на железе гидроксида железа Fe(ОН)3.

Этот процесс может протекать только в присутствии влаги (воды или водяных паров).

Но почему же тогда не рушатся в одночасье мосты, не рассыпаются мгновенно самолёты и автомобили? Да и кастрюльки со сковородками не превращаются на наших глазах в рыжий, чёрный или серый порошок.

К счастью, реакции окисления металлов протекают не столь стремительно. Как и любой процесс, они идут с определённой скоростью, порою очень небольшой. Более того, есть много способов замедлить коррозию.

Плечо друга

Вы замечали, что на нержавеющей стали не бывает ржавчины, хотя её основу составляет то же самое железо, которое при окислении (в присутствии воды или водяного пара) превращается в рыжий мохнатый гидроксид. Тут есть одна хитрость: нержавеющая сталь — это сплав железа с другими металлами. Введение в металлические сплавы элементов для придания им тех или иных свойств называется легированием.

Основной легирующий элемент, который добавляют к обычной (углеродистой) стали, чтобы получить нержавеющую, — хром. Этот металл тоже стремится окислиться, что он с успехом и делает гораздо охотнее и быстрее, чем само железо.

При этом на поверхности нержавеющей стали быстро образуется плёнка из оксида хрома.

В отличие от рыхлой ржавчины компактный тёмный оксид хрома не даёт агрессивным ионам окружающей среды проникать к поверхности металла, то есть оксид попросту прикрывает собой металл, и процесс коррозии прекращается.

Такие оксидные плёнки называются защитными. В нержавеющих сталях хрома должно быть строго определённое количество, но не менее 13%. Кроме хрома в нержавеющие стали часто добавляют никель, молибден, ниобий и титан.

Благодаря защитным плёнкам многие металлы неплохо выдерживают воздействие различных сред. Возьмём, к примеру, алюминиевую кастрюльку, в какой кипятят молоко или варят манную кашу.

Обычно такая кастрюлька не блестит, подобно хрому или нержавеющей стали, и имеет слегка белёсый цвет.

Дело в том, что на алюминии, как и на других металлах, на воздухе всегда образуется белёсая оксидная плёнка (оксид алюминия), которая отлично защищает металл от коррозии.

Такие плёнки называются пассивными, а металлы, на которых они самопроизвольно образуются, — пассивирующимися. Если же алюминиевую кастрюльку почистить металлической щёткой, налёт исчезнет и появится металлический блеск. Но очень быстро поверхность вновь покроется плёнкой оксида алюминия и станет белёсой.

Укрощение активных

Перевести металл в пассивное состояние можно принудительным образом.

Например, железо помимо незащитных гидроксида железа или же низших оксидов (закиси и закиси-окиси) при определённых условиях образует высший оксид — окись железа (Fe2О3).

Этот оксид неплохо защищает металл и его сплавы при высоких температурах на воздухе, он же (одна из его форм) «ответственен», как считают специалисты, за пассивное состояние железных сплавов во многих водных средах.

Устойчивость нержавеющей стали в крепкой серной кислоте связана именно с пассивированием стали в этой весьма агрессивной среде.

Если же поместить нержавейку в слабый раствор серной кислоты, сталь начнёт корродировать.

Парадокс объясняется просто: крепкая серная кислота обладает сильными окислительными свойствами, благодаря чему на поверхности нержавеющей стали образуется пассивирующая плёнка, а в слабой кислоте не образуется.

В случаях, когда агрессивная среда недостаточно «окислительная», используют специальные химические добавки, помогающие образованию на поверхности металла пассивной плёнки. Такие добавки называют ингибиторами или замедлителями коррозии.

Не все металлы способны образовывать пассивные плёнки, даже принудительно. В этом случае добавление в агрессивную среду ингибитора, напротив, удерживает металл в «восстановительных» условиях, в которых его окисление подавляется (оно энергетически невыгодно).

Жертвоприношение

Искусственно поддерживать металл в «восстановительных» условиях можно и иным способом, ведь не всегда есть возможность добавить ингибитор. Возьмём, к примеру, обычное оцинкованное ведро.

Оно сделано из углеродистой стали, а сверху покрыто слоем цинка. Цинк — более активный металл, чем железо, значит, он охотнее вступает в химические реакции.

Поэтому цинк не просто механически изолирует стальное ведро от окружающей среды, но и «принимает огонь на себя», то есть корродирует вместо железа.

Для подземных коммуникаций «восстановительные» условия создают с помощью электрохимической защиты: накладывают на защищаемый металл отрицательный (катодный) потенциал от внешнего источника тока, так что на металле прекращается процесс окисления.

Однако зачем нужно столько разных сложных способов защиты металлов? Разве нельзя просто покрасить металл или нанести на него эмаль?

Во-первых, всё покрасить невозможно. А во-вторых Возьмём для примера эмалированную кастрюлю или автомобиль.

Если кастрюля, вырвавшись из рук, с грохотом упадёт на пол и отшибёт себе эмалированный бочок, то под отколовшейся эмалью будет зиять «чёрный глаз», края которого постепенно окрасятся в предательский рыжий цвет — скол покроется ржавчиной.

Не лучшая судьба ждёт и автомобиль, если вдруг в его лаковом боку (а чаще на стыке с днищем) образуется небольшая дырочка в слое лака.

Этот канал поступления к корпусу агрессивных агентов — воды, кислорода воздуха, сернистых соединений, соли — немедленно заработает, и корпус начнёт ржаветь. Вот и приходится владельцам автомобилей делать дополнительную антикоррозионную обработку.

Невидимый злодей

Так, может, проблема коррозии металлов решена? Увы, не всё так просто. Любые коррозиестойкие сплавы устойчивы только в определённых средах и условиях, для которых они разработаны.

Например, большинство нержавеющих сталей отлично выдерживают кислоты, щёлочи и очень «не любят» хлориды, в которых они часто подвергаются местным видам коррозии — язвенной, точечной и межкристаллитной. Это очень коварные коррозионные разрушения.

Конструкция из красивого, блестящего металла без намёка на ржавление может однажды рухнуть или рассыпаться. Всё дело в мельчайших точечных, но очень глубоких поражениях.

Или же в микротрещинах, не видимых глазом на поверхности, но пронизывающих буквально всю толщу металла.

Не менее опасно для многих сплавов, не подверженных общей коррозии, так называемое коррозионное растрескивание, когда внезапно конструкцию пронизывает огромная трещина. Такое случается с металлами, испытывающими длительные механические нагрузки — в самолётах и вертолётах, в различных механизмах и строительных конструкциях.

  Ручная гибка листового металла

Крушение поездов, падение самолётов, разрушение мостов, выбросы газа и разливы нефти из трубопроводов — причиной подобных катастроф нередко становится коррозия. Чтобы её укротить, предстоит ещё много узнать о сложнейших природных процессах, происходящих вокруг нас.

Источник: https://ssk2121.com/pochemu-rzhaveet-metall/

Коррозия железа

Процесс коррозии железа чаще всего сводится к его окислению кислородом воздуха или кислотами, содержащимися в растворах, и превращению его в оксиды. Коррозия металлов (ржавление) вызывается окислительно-восстановительными реакциями, протекающими на границе металла и окружающей среды. В зависимости от механизма возникновения, различают такие виды коррозии железа, как: химическая, электрохимическая и электрическая.

Процесс химической коррозии железа

Окислительно-восстановительные реакции в данном случае проходят через переход электронов на окислитель. В процессе коррозии такого типа кислород воздуха взаимодействует с поверхностью железа. При этом образуется оксидная пленка, которая называется ржавчиной:

3Fe + 2O2 = Fe3O4 (FeO•Fe2O3)

В отличие от плотно прилегающих оксидных пленок, которые образуются в процессе коррозии на щелочных металлах, алюминии, цинке, рыхлая оксидная пленка на железе свободно пропускает к поверхности металла кислород воздуха, а также другие газы и пары воды. Это способствует дальнейшей коррозии железа.

Процесс электрохимической коррозии

Этот вид коррозии проходит в среде, которая проводит электрический ток. Металл в грунте подвергается, преимущественно, электрохимической коррозии. Процесс коррозии такого типа – это результат химических реакций с участием компонентов окружающей среды. Также электрохимическая коррозия возникает в случае контакта металлов, находящихся в ряду напряжений на некотором расстоянии друг от друга, в результате чего возникает гальваническая пара катод-анод.

Атмосферный и грунтовый процесс коррозии выражается схемой:

Fe + O2 + H2O → Fe2O3 · xH2O

В результате образуется ржавчина различной расцветки, что обусловлено тем, что образуются различные окислы железа. Какое именно вещество образуется в процессе коррозии железа, зависит от давления кислорода, влажности воздуха, температуры, длительности процесса, состава железного сплава, состояния поверхности изделия и т. д. Скорость разрушения разных металлов различна.

Процесс коррозии металла в растворах электролитов – это результат работы большого количества микроскопических гальванических элементов, у которых в качестве катода выступают примеси в металле, а в качестве анода – сам металл. В результате чего возникают микроскопические гальванические элементы.

Также атомы железа на разных участках имеют различную способность отдавать электроны (окисляться). Участки металла, на котором протекает этот процесс, выступают в роли анода. Остальные участки – катодные, на которых происходят процессы восстановления воды и кислорода:

H2O + 2e– = 2OH– + H2

O2 + 2H2O + 4e– = 4OH–

Результат – из ионов железа (II) и гидроксид-ионов образуется гидроксид железа (II). Далее идет его окисление до гидроксида железа (III) – основного компонента ржавчины:

Fe2+ + 2OH– = Fe(OH)2
Fe(OH)2 + O2 + H2O → Fe2O3 · xH2O

Для того чтобы гальванический элемент работал, необходимо наличие двух металлов различной химической активности и среды, которая проводит электрический ток, – электролита.

При контакте железа и другого металла (например, цинка) коррозия железа замедляется, а более активного металла (цинка) – ускоряется. Это обусловлено тем, что поток электронов идет от более активного металла (анода) к менее активному металлу (катоду).

Так, при контакте железа с менее активным металлом, коррозия железа ускоряется.

Процесс электрической коррозии

Такой вид разрушения металлических подземных конструкций, кабелей и сооружений могут вызывать блуждающие токи, исходящие от трамваев, метро, электрических железных дорог и различных электроустановок с постоянным током.

ЭТО ИНТЕРЕСНО:  Как сварить алюминий в домашних условиях

Ток с металлических конструкций выходит в грунт в виде положительных ионов металла – происходит электролиз металла. Участок выхода токов – это анодные зоны. Именно в них и протекают активные процессы электрической коррозии железа. Блуждающие токи могут достигать 300 А и действовать в радиусе нескольких десятков километров.

Блуждающими токами, исходящими от источников переменного тока, вызывается слабая коррозия подземных стальных конструкций, и сильная – конструкций из цветных металлов. Защита металлических конструкций от коррозии является очень важной задачей, так как она причиняет огромные убытки. 

Источник: https://notehspb.ru/o_korrozii/korroziia_zheleza

Удаление ржавчины

По статистике, потери от ржавчины (коррозии) составляют до 12% от всего производимого металла. Условия эксплуатации металлических изделий и конструкций постоянно ужесточаются, в том числе и из-за загрязнения атмосферы. Так, выбросы оксидов серы или азота приводят к образованию микрокапель серной или азотной кислот, при этом скорость образования ржавчины увеличивается в несколько раз.

Ржавчина — химические основы процесса

Железо – химически активный металл, который в присутствии воды и кислорода легко окисляется, образуя несколько соединений – оксидов, гидроксидов и их гидратов. Как ни странно, но точной формулы ржавчины не существует: в зависимости от условий окружающей среды продукт окисления железа имеет переменный состав: nFe(OH)3*mFe(OH)2*pH2O.

Поражение ржавчиной происходит по всей поверхности металла, но наиболее уязвимыми местами являются сварные швы, внутренние углы конструкций, отверстия для резьбовых соединений. По своей структуре ржавчина очень рыхлая, сцепление с металлом практически отсутствует.

Из-за высокой пористости слой ржавчины легко задерживает атмосферную влагу, создавая благоприятные условия для дальнейшего разрушения металла.

Опасность процесса в том, что визуально оценить степень поражения металлической конструкции не представляется возможным: под красно-бурым слоем ржавчины металл может быть полностью разрушен. Если своевременно не принять меры, результат может оказаться плачевным, вплоть до полного разрушения изделия. Одно дело, если это – ржавый гвоздь в стене дачного домика, и совсем другое – если ржавчина поразила опору ЛЭП или корпус морского судна.

Способы удаления ржавчины

Народная мудрость гласит, что любую проблему проще предотвратить, чем потом прикладывать героические усилия для устранения ее последствий. Ржавчина – не исключение. За последние 20-30 лет химики и физики предложили немало способов предотвращения коррозии – от защитных покрытий до сложных инженерных сооружений – станций электрохимической защиты.

Если ржавчина все-таки появилась – это не повод опускать руки: есть немало эффективных способов ее удаления, и чем раньше предприняты активные меры, тем большим будет эффект от их применения. Итак, обо всем по порядку.

Механическое удаление ржавчины

Продукты коррозии обладают малой адгезией и поэтому легко удаляются с поверхности металла при механическом воздействии – например, при обработке металлической щеткой.

Снять ржавый налет с крупных изделий можно с помощью шлифовального станка, соблюдая при этом простое правило: начинать нужно с крупного зерна, а для финишной обработки использовать самое мелкое. Участки металла, с которых удалена ржавчина, оказываются совершенно беззащитными перед атмосферным воздействием.

Если их не обработать антикоррозионными составами, предотвращающими контакт с водой и кислородом, процесс ржавления только ускорится.  

Химические способы удаления ржавчины

Зная природу и химический состав ржавчины, логично предположить, что удалить ее можно с помощью кислот. Из школьного курса химии известно, что оксиды и гидроксиды металлов легко взаимодействуют с кислотами, при этом образуются соли железа и соответствующей кислоты, и вода.

Например, при действии соляной кислоты происходят следующие реакции:

  • 2Fe (OH)3 + 6HCL → 2FeCl3 + 6H2O
  • Fe (OH)2 + 2HCL → FeCl2 +2H2O

Образующийся хлорид железа – водорастворимая соль, которую необходимо удалить с поверхности обрабатываемого изделия простым ополаскиванием в воде, а затем насухо вытереть поверхность. Не надо ждать, пока ржавчина начнет образовываться снова, очищенные участки следует обработать защитными составами.

При обработке кислотами существует опасность растворения металла, поскольку железо в электрохимическом ряду напряжений стоит до водорода, оно активно реагирует со многими разбавленными кислотами:

По этой причине прежде, чем заняться химическими экспериментами в домашних условиях, необходимо почитать соответствующую литературу. Устранить побочный эффект поможет ингибитор коррозии – уротропин, при добавлении всего 1-2 г на литр раствора соляной кислоты реакция с железом не протекает.

Преобразователи ржавчины

Жидкие составы на основе ортофосфорной кислоты являются отличным способом предотвратить дальнейшее образование ржавчины на поверхности стальных и железных изделий. При таком способе обработки предварительно удаляются лишь те участки ржавчины, которые слабо держатся на основе.

Образующийся в процессе реакции ортофосфат железа создает прочную защитную пленку, через которую не проникает влага и кислород, благодаря чему предотвращается дальнейшая коррозия металла.

Для ускорения процесса высыхания на литр 25%-ого раствора ортофосфорной кислоты можно добавить 30-40 мл изобутилового спирта или 15 граммов винной кислоты.

Современное оборудование для удаления ржавчины

Механические способы очистки поверхности от ржавчины с помощью подручных средств применимы далеко не всегда, если изделие имеет сложную форму, то обработать все участки не представляется возможным. Химические способы тоже имеют свои недостатки, при несоблюдении элементарных правил техники безопасности можно получить химический ожог или отравление.

Определенную проблему представляет и утилизация отработанных растворов.

Оптимальным способом удаления ржавчины, особенно с поверхности изделий сложной геометрической формы, является мягкий бластинг. Суть метода состоит в следующем, на металлическое изделие направляется струя сжатого воздуха, содержащая особые абразивные гранулы.

Меняя давление, можно регулировать глубину слоя, снимаемого с поверхности – таким образом удаляется только слой ржавчины или окалины, а металл остается нетронутым. Гранулы ARMEX, используемые в аппарате для мягкого бластинга Nordblast NB 28-2, состоят из мельчайших частиц соды и мела.

Попадая под большим давлением на поверхность, они легко удаляют не только ржавчину, но и лакокрасочные материалы.

Отличительной особенностью метода является абсолютная экологическая безопасность: применяемые компоненты химически инертны. Многочисленные исследования доказали, что на поверхности металла практически не образуются царапины и иные микроскопические дефекты, которые последствии могут стать центрами повторного образования ржавчины. Щелочная природа гранул способствует образованию пассивной пленки на изделиях из железа или стали, предохраняя основной объем металла от коррозионного разрушения.

Наилучшие результаты применения аппарата мягкого бластинга Nordblast NB 28-2 получены при обработке деталей машин или яхт. Процесс чистки от ржавчины зависит от степени коррозии, обычно на полную обработку автомобиля уходит 1 день, яхты – 2 дня.

Чем раньше обнаружена проблема, тем проще бороться с ржавчиной. Какой способ наиболее предпочтителен – каждый решает самостоятельно, но не стоит пользоваться дедовскими методами, если есть оборудование, удаляющее ржавчину со 100%-ой эффективностью!

Оставляете заявку на сайте или по телефону

Оцениваем запрос и тех. документацию

Осматриваем объект

Подготавливаем КП

Сдаем работу заказчику

Выполняем работы

Разрабатываем рабочую документацию

Заключаем договор

Наши преимущества

Подготовленный персонал, находящийся постоянно в штате

Наличие богатого технического оснащения

Гарантийное и послегарантийное обслуживание

Самый большой спектр услуг в России

Большой опыт работы на разнотипных объектах

Источник: https://blastingservice.ru/services/udalenie-kraski/udalenie-rzhavchiny/

Что такое ржавчина и как с ней бороться: оксиды железа

Как показывает практика, ржавчина (коррозия) поражает почти 12% производимого в мире железа. В связи с тем, что окружающая среда становится все более агрессивной, в том числе из-за ее загрязнения, металлы эксплуатируются все в более сложных условиях. Оксиды серы или азота, выделяемые из атмосферы, образуют микрокапли азотной или серной кислоты, что приводит к существенному возрастанию скорости появления ржавчины.

Химические основы процесса коррозии железа

Железо является химически активным металлом. Оно в присутствии кислорода и воды подвергается окислению, при этом образуя разнообразные соединения: оксиды, гидроксиды, гидраты оксидов. Химки констатируют, что определенной формулы ржавчины нет. Что такое ржавчина? Это коррозия, которая образуется вследствие окисления железа. Она обладает переменным составом, который зависит от окружающей среды.

Ржавчина поражает железо по его всей поверхности. Однако самыми уязвимыми являются внутренние и внешние узлы изделий, сварочные швы, резьбовые соединения. Структуры ржавого железа отличаются значительной степенью рыхлости. У ржавчины отсутствует какое-либо сцепление с металлом. Вследствие того, что поверхность высокопористой коррозии свободно удерживает в себе атмосферную влагу, создаются оптимальные условия для дальнейшего разрушения железа.

Обычно цвет ржавчины — красно-бурый, коричневый, который не позволяет оценить состояние железа под слоем коррозии. Под ржавчиной металл может быть окончательно разрушен.

Если не принимать меры для предотвращения ее распространения, то результаты воздействия коррозии на железо могут оказаться катастрофическими, привести к полному разрушению конструкций. Это особенно опасно, если ржавчина разъела опоры ЛЭП или дно морского судна.

Что такое ржавчина для автомобиля, и какой вред она несет, известно каждому автомобилисту.

Причины появления ржавчины

Ржавчина начинает появляться тогда, когда металл контактирует с кислородом, водой, окислителями либо кислотами. Одним из условий того, что металл подвергается ржавчине, является наличие в нем примесей либо добавок. Если имеет место контакт железа с внешними раздражителями в присутствии соли (соленая вода), то коррозия разрушает его значительно быстрее в виду начала электрохимических реакций.

Если железо является чистым, без примесей, то оно к воздействиям кислорода и воды значительно устойчивее. Так же, как и у них металлов, таких как алюминий, на его поверхности образуется плотное оксидное покрытие (слой пассивации), который обеспечивает защиту основной массы железа от более глубокого окисления. Однако и этот слой может быть разрушен, если начинается взаимодействие железа с кислородом и водой совместно.

Иными факторами, которые активно разрушают железо, являются углекислый газ в воде и серный диоксид. При их воздействии очень активно образуются разнообразные типы гидроксида железа. Они, в отличие от оксидов железа, не могут защитить металл.

Гидроксид, формируясь, начинает отслаиваться от поверхности железа, после чего негативному воздействию подвергается нижний слой, который также отслаивается.

И этот процесс длится до того времени, пока весь металл не будет уничтожен, либо в окружающей среде не останется кислорода, диоксида углерода, серы и воды.

Если железо, подвергаясь сгоранию на воздухе, контактирует с кислородом, то имеет место образование оксида железа ii.

При сгорании в чистом кислороде — оксид IV.

Оксид железа iii образуется тогда, когда через металл, находящийся в расплавленном состоянии, проходит воздух или кислород.

Состав ржавчины

Ржавчина, которая образуется в обычных условиях, является как правило смесью 3 оксидов железа. Они образуются не в один момент и имеют разные физико-механические свойства. Железные оксиды с самого нижнего слоя по направлению к поверхности представляют собой сочетание следующих составляющих:

  1. Вюстит (оксид железа) — мягкая структура, зависящая от условий, в которых находится металл. Если температура хранение высокая, то этот слой наибольший.
  2. магнетит (магнитный железняк) – окись-закись железа, обладающая более высокой пористостью, чем вюстидный слой, и меньшей твердостью. Это структура имеет выраженные магнитные свойства.
  3. Гематит (красный железняк) – обычно это структура красно-серого цвета, твердое абразивное вещество. Гематит обладает более высокой плотностью, разъедает металл и увеличивает коэффициент трения при соприкосновении с поверхностями.

Перед тем, как заняться работами по ликвидации ржавчины, необходимо узнать состав металла, особенно на его поверхности, а также установить условия, которые способствовали ее появлению. Располагая такой информацией, достаточно просто найти оптимальный вариант для удаления оксида железа и выбрать наиболее эффективные средства для борьбы с ржавчиной.

Классификация способов борьбы с коррозией

С учетом основных составляющих коррозии, способы, как вывести ржавчину, делятся на следующие:

  • Механический — ликвидация оксидного слоя осуществляется посредством жестких металлических щеток, наждачной бумаги и т. п.
  • Тепловой — осуществляется посредством воздействия на коррозию высоких температур, обычно в сочетании с водяным и (или) воздушным потоками.
  • химический — удаление оксидов железа осуществляется вследствие воздействия на них специальными средствами, растворяющими ржавчину, при нанесении их на поверхность металла.

Необходимо учитывать, что эффективность вышеуказанных методов различна. Так, если процесс образования коррозии установлен своевременно, и это небольшое пятно, то поверхность железа можно эффективно обработать стальной щеткой, наждачный крупнозернистой бумагой, угловой шлифовальной машиной с соответствующей насадкой.

Однако если установлено, что ржавчина захватила большие поверхности, то тогда оптимальными методами будут химические.

Если площади ржавого металла очень большие, их невозможно транспортировать, то тогда оптимальным считается тепловая обработка, но она связана с высокой трудоемкостью.

Обычно обработка металла для удаления ржавчины осуществляется комбинированными способами, при которых различные методы применяют в определенной последовательности.

ЭТО ИНТЕРЕСНО:  Что называется сплавом железа с углеродом

Механические способы

Выбор определенного способа механической обработки зависит от вида поверхности железа. Так для мотков стальной проволоки применяют ее перематывание с одного носителя на другой. В этом случае при перегибах ржавчина отделяется от поверхности металла.

При удалении коррозии механическим способом обычно используют жесткие щетки из стальной щетины или наждачную бумагу (крупнозернистую).

К недостаткам механических способов избавления от ржавчины относится тот факт, что на поверхности железа остаются следы, образованные очистительным инструментом. Поэтому рекомендуется поверхность очищенного железа подвергать полировке для придания ей прежнего внешнего вида.

Тепловая очистка

Для удаления ржавчины тепловыми методами необходимы специальные установки (промышленные парогенераторы либо строительные фены). Способ очистки от оксидов железа основан на том, что контакт ржавчины с основным металлом не прочен. Воздействие повышенной температуры и горячей влаги при большом скоростном воздушном потоке такое, что ржавчина удаляется практически полностью.

Наиболее эффективен этот метод тогда, когда на обрабатываемую поверхность подается и горячий пар. Паровоздушная смесь в струе, которая подается на металлическую поверхность под давлением, приводит к размягчению ржавчины, дроблению на отдельные фрагменты, которые удаляются с поверхности железа воздушным потоком.

Эти методы особенно эффективны, когда необходимо удалить ржавчину со стальных дверей, вентиляционных конструкций, металлических структур, демонтировать которые невозможно либо затруднительно.

Химическая очистка

В настоящее время методы химической очистки металлических поверхностей от ржавчины очень разнообразны. Однако у всех в основе лежит один процесс — удаление коррозии посредством химического воздействия на нее растворами кислот.

К наиболее эффективным способам избавления от окислов железа относят воздействие на ржавчину соляной кислотой, особенно когда ее концентрация в растворе составляет не менее 15%. Если концентрация меньше, то растворение ржавчины существенно замедляется.

Кислотные составы, сделанные на основе серной кислоты, применять не следует, так как в результате воздействия на поверхности железа образуется слой гидридов, которые повышают хрупкость металла.

Если необходимо осуществить химическую очистку металла в домашних условиях, то возможно применение неагрессивных веществ, таких как лимон, уксус и т.п. Принцип воздействия на коррозию такой же. Эти вещества достаточно хорошо растворяют ржавчину, которая потом легко удаляется ветошью. Что такое ржавчина и как ее удалить, вероятно, знает большинство домохозяек.

Применение иного оборудования для удаления коррозии металла

Механические методы борьбы со ржавчиной возможно использовать далеко не всегда, особенно если металлические изделия имеют сложные формы.

Химические методы имеют также определенные недостатки. Если не соблюдать технику безопасности, то можно получить химический ожог либо отравление. Есть сложности с утилизацией отработанных растворов.

Вследствие этого наиболее оптимальным является применение способа так называемого мягкого бластинга. Его принцип состоит в том, что на поверхность металла, поврежденного ржавчиной, направляется струя сжатого воздуха, которая содержит в себе абразивные составляющие.

Изменяя давление в струе, можно регулировать глубину слоя, который снимается. Это приводит к тому, что удаляется только ржавчина, тогда как сам металл остается сохранным. Гранулы, которые действуют на коррозию, состоят из мелкодисперсной соды и мела, можно применять и очень мелкий песок.

Источник: https://FB.ru/article/452298/chto-takoe-rjavchina-i-kak-s-ney-borotsya-oksidyi-jeleza

Как остановить ржавчину

Черный металл подвержен коррозии – процессу разрушения из-за влияния внешних факторов. Если не знать, как остановить ржавчину, процесс коррозии приобретает необратимый характер течения и, как следствие, – разрушение конструкции.

Ржавление происходит не только с тем металлом, который находится над землей на открытом воздухе, а и с тем, который находится под землей, внутри бетонных изделий (ЖБИ).

«Рыжий налет» или что такое ржавчина металла

Очень часто можно встретить отождествление коррозии и ржавчины, что не верно. Коррозия – это процесс, а ржавчина – продукт. Таким образом, ржавчина металла – это продукт коррозийного процесса, представляющий собой окись железа (окалину), образуемую на поверхности металлического изделия с проникающим характером развития. Имеет насыщенный коричнево-рыжий цвет и рыхлую консистенцию, поддающуюся механическому воздействию.

Причины образования ржавчины:

  • Отсутствие защитного покрытия (чтобы удешевить готовое изделие производители редко обрабатывают такие изделия, как арматура, сетка-рабица защитными покрытиями, поэтому нередко на стройплощадке можно увидеть ржавую арматуру).
  • Неправильное хранение (металл хранится на открытом воздухе либо во влажном помещении).
  • Негативное воздействие окружающей среды (смог, частые осадки, туман, ультрафиолет) на металл.

Поскольку не всегда можно предупредить воздействие одного из факторов коррозирования, нужно знать, как остановить ржавчину и тем самым предупредить разрушение конструкции.

Способы остановки и предупреждения ржавления металла

В практике строительства используется несколько способов остановки процесса коррозии и удаления уже образовавшейся ржавчины на поверхности металла.

Остановить ржавчину можно такими способами:

  • Механическим.
  • Термическим.
  • Химическим.

Механический способ удаления ржавчины состоит в очищении ржавой поверхности наждачной бумагой с соответствующим абразивным напылением. Также очистку можно выполнить щеткой по металлу, скребком и подобными инструментами. Если ржавчина поразила большие площади, используется струйно-абразивный метод. Это самый простой и доступный способ избавления от ржавчины. Правда, при значительном повреждении металла только механической чистки будет недостаточно.

Термический способ осуществляется газопламенным методом. Кроме удаления ржавчины, повышает прочность стальной арматуры. В отличие от «механики» требует навыков работы со специализированным оборудованием и четким соблюдением техники безопасности.

Химический способ, как остановить ржавчину – наиболее прогрессивный и высокоэффективный. Состоит в том, что на ржавые поверхности наносится раствор специального препарата, под действием которого нарушается адгезия окалины с металлом, в результате чего происходит очищение поверхности и остановка разрушения металла.

Химические препараты отличаются основой, которая бывает кислотной, щелочной и нейтральной. В отличие от первых двух, нейтральный преобразователь ржавчины абсолютно безопасен для человека и окружающей среды. При этом эффективно удаляет ржавчину, преобразуя ее в защитное покрытие.

Источник: https://syntilor.ru/preobrazovatel-rzhavchiny/kak-ostanovit-rzhavchinu/

Характеристика ржавчины

С химической точки зрения ржавчина представляет собой оксид железа. Он образуется путем влияния кислорода на железо в условиях высокой влажности. С физической точки зрения данное образование на металлической поверхности представляет собой налет насыщенного оранжевого цвета, который обладает достаточно хрупкой консистенцией. Цвет ржавчины при некоторых условиях может быть и зеленым.

На сегодняшний день встречается несколько видов ржавчины. Они зависят от того, каким образом образуется налет.

К видам данного типа коррозии относятся:

  • Красные окислы. Они образуются под воздействием кислорода на железо под воздействием воды.
  • Зеленая ржавчина. Она образуется под воздействием на железо хлора без участия в процессе кислорода. В современно мире не редко встречается такой тип ржавчины. Он известен многим благодаря налету, который образуется на арматуре, которая применяется для сооружения бетонных морских столбов.

Существует еще несколько видов и форм ржавчины. Все он отличаются визуально. В некоторых случаях для определения типа коррозии используется метод спектроскопии. Образование коррозии на железе практически неизбежно.

Постепенно любое количество данного металла под воздействием кислорода и воды превращается в груду, которая полностью покрыта налетом насыщенного оранжевого цвета. В последующем это может привести к разрушению железа.

Под воздействием ржавчины данный металл начинает приобретать не плотную структуру, что приводит к тому, что ржавчина его разъедает и уничтожает.

Ржавчина принадлежит к одному из продуктов такого процесса, как коррозия. В результате него повреждаются различные виды металлов. Коррозии подвержены металлы, которые образуются из сплавов железа. Сталь в некоторых случаях тоже подвергается данному процессу, если она не относится к разряду нержавеющих. Однако ржавчиной называется именно процесс образования оксида железа.

Причиной ржавления железа чаще всего является наличие воды, доступа к кислороду и к другим сильным окислителям. Под их воздействием железо начинает покрываться ржавым налетом. Для того чтобы ускорить этот процесс достаточно только добавить соли. В результате электрохимической реакции железо начнет ржаветь сильнее и быстрее произойдет разрушение предмета, который сделан из данного металла.

В некоторых случаях железо начинает покрываться ржавчиной, если оно находится в агрессивной среде. Такой средой может быть раствор, состоящий из воды диоксида серы и углекислого газа.

Таблица. Основные количественные показатели коррозии и коррозионной стойкости

Вид коррозииОсновные количественные показатели коррозии и коррозионной стойкостиКоррозионный эффект (интегральный показатель коррозии)Скоростной (дифференциальный) показатель коррозииПоказатель коррозионной стойкости
Сплошная коррозия Глубина проникновения коррозии Линейная скорость коррозии Время проникновения коррозии на допустимую (заданную) глубину*
Потеря массы на единицу площади Скорость убыли массы Время до уменьшения массы на допустимую (заданную) величину*
Коррозия пятнами Степень поражения поверхности Время достижения допустимой (заданной) степени поражения*
Питтинговая коррозия Максимальная глубина питтинга Максимальная скорость проникновения питтинга Минимальное время проникновения питтингов на допустимую (заданную) глубину*
Максимальный размер поперечника питтинга в устье Минимальное время достижения допустимого (заданного) размера поперечника питтинга в устье*
Степень поражения поверхности питтингами Время достижения допустимой (заданной) степени поражения*
Межкристаллитная коррозия Глубина проникновения коррозии Скорость проникновения коррозии Время проникновения на допустимую (заданную) глубину*
Снижение механических свойств (относительного удлинения, сужения, ударной вязкости, временного сопротивления разрыву) Время снижения механических свойств до допустимого (заданного) уровня*
Коррозионное растрескивание Глубина (длина) трещин Скорость роста трещин Время до появления первой трещины**
Снижение механических свойств (относительного удлинения, сужения) Время до разрушения образца** Уровень безопасных напряжений** (условный предел длительной коррозионной прочности**) Пороговый коэффициент интенсивности напряжений при коррозионном растрескивании**
Коррозионная усталость Глубина (длина) трещин Скорость роста трещин Количество циклов до разрушения образца** Условный предел коррозионной усталости** Пороговый коэффициент интенсивности напряжений при коррозионной усталости**
Расслаивающая коррозия Степень поражения поверхности отслоениями Суммарная длина торцов с трещинами
Глубина проникновения коррозии Скорость проникновения коррозии

Борьба с ржавчиной

В современном мире производится большое количество изделий из железа. Они представлены и товарами промышленного назначения, и продукцией для использования в быту. Всегда хочется, чтобы они прослужили длительное время. Образование ржавчины не является полезным для предметов, сделанных из железа. Она приводит к их поломке и выходу из строя. Именно по этой причине следует знать о том, как убрать ржавчину, и как противостоять ее появлению.

Для того чтобы ржавчина не нанесла вред изделиям необходимо использовать специальные средства для того, чтобы на поверхности объектов из железа образовалась пленка, защищающая от проникновения в структуру металла воздуха и воды.

На сегодняшний день для защиты от ржавчины используются следующие методы:

  • Гальванизация. Данный метод применяется при производстве нержавейки. На металл наносится слой меди или цинка. Также в некоторых случаях применяется кадмий. Данные вещества образуют на поверхности не видную пленку, которая придает материалу железа плотность и высокую устойчивость к влаге и к кислороду.
  • Катодная защита. Данный метод применяется преимущественно для труб, которые прокладываются глубоко под землей. К ним проводится электрический заряд, который вызывает электрохимическую реакцию, предотвращаю появление ржавого налета на поверхности труб.
  • Нанесение на поверхность предметов из железа лакокрасочных изделий. Данный метод заключается в том, чтобы помимо декорирования изделия, защитить его от налета ржавчины. Краска тонким слоем покрывает металла и не дает возможности влаге и воздуху добраться до структуры железа.

Важно: Для того чтобы на окрашенном изделии не образовалось ржавчины необходимо следить, чтобы краска лежала ровным слоем и не имела никаких сколов. Иначе на поверхность металла будет влиять влажность и воздух.

В настоящее время имеются средства для удаления ржавчины. Их можно использовать, когда налет уже образовался. Они направлены на то, чтобы сделать структуру налета более хрупкой для получения возможности снятия его с поверхности металла.

Самым популярным средством устранения ржавого налета является преобразователь ржавчины. Он представляет собой раствор, который превращает налет в вещество, которое легко поддается устранению. Многие такие средства делают структуру ржавчины более однородной, что позволяет оставлять ее на поверхности металла для проведения лакокрасочных работ, если она не нарушает ее ровность.

Средства для удаления ржавчины

Сегодня не редко встречается специальная краска по ржавчине. Она представлена на отечественном рынке большим количеством марок. Ее достоинством является то, что, она дает достаточно плотное покрытие. Она обладает тройным действием.

Она сочетает в себе функции:

  • преобразователя ржавчины,
  • грунтовки,
  • красящего вещества с высоким уровнем плотности.

Она не только устраняет следы ржавчины, но и делает покрытие более ровным и привлекательным. Краски для работы с ржавыми предметами обладают высоким уровнем насыщенности цвета, чтобы даже в один слой скрывались все следы наличия ржавого налета. При этом на металле образуется небольшой слой пленки, который не дает ржавчине и дальне распространяться и развиваться новой.

удаления ржавчины

Источник: http://lkmprom.ru/clauses/tekhnologiya/rzhavchina-ispolzovanie-preobrazovatelya-dlya-borb/

Понравилась статья? Поделиться с друзьями:
Металлы и их обработка
-- Сайдб лев (липк) -->
Как варить оцинкованные трубы

Закрыть