Какой температуре плавится металл

Как правильно расплавить латунь в домашних условиях

Какой температуре плавится металл

Чтобы организовать плавление металла в домашних условиях необходимо изготовить приспособление, в котором можно было бы нагреть заготовку до необходимой температуры. Если для плавления олова и свинца, достаточно загрузить сырьё в металлическую ёмкость и поставить её на огонь. То для литья медных сплавов потребуется приобрести специальную печь.

О том как осуществляется плавка латуни в домашних условиях будет рассказано в данной статье. Но прежде чем приступить к описанию основных этапов работы, необходимо изучить теоретические сведения о металлическом сплаве.

Из чего состоит латунь

Латунь состав сплава которого может существенно отличаться, обязательно содержит медь в количестве не менее 55%. На остальные 45% в составе двухкомпонентного сплава приходится доля цинка. Цинк в составе медного сплава существенно увеличивает механическую прочность сплава и устойчивость к коррозии.

Кроме цинка многокомпонентная латунь может содержать:

  • Алюминий.
  • Олово.
  • Никель.
  • Марганец.
  • Кремний.

Дополнительные добавки необходимы в том случае, если требуется наделить металлический сплав новыми свойствами, которые будут способствовать более лёгкому формированию изделия при литье и во время механической обработки.

Для плавления латуни сплав необходимо нагреть до 880 — 950 градусов. Какая именно температура необходима для плавки конкретного вида латуни зависит от её состава, но при выполнении плавления металлов в домашних условиях не всегда удаётся установить марку сплава.

Чтобы гарантированно расплавить латунь в домашних условиях следует приобрести специальное устройство, в котором металл нагревался бы до максимальной температуры плавления.

Самостоятельное изготовление плавильного устройства потребует значительных временных затрат и специальных знаний. Поэтому намного проще приобрести в специализированных магазинах готовые плавильные печи, работающие на газе или от сети переменного тока.

Печь и инструменты для плавления латуни

Чтобы осуществить литьё латуни в домашних условиях необходимо приобрести специальную печь.

В домашних условиях лучше всего использовать небольшие устройства с максимальной температурой нагрева 1300 градусов. Такое ограничение необходимо чтобы предотвратить выгорание цинка входящего в состав данного медного сплава.

  1. В качестве ёмкости для плавления латуни используются графитовые тигли.
  2. Также потребуется приобрести щипцы и большую ложку. Щипцы необходимы для установки и снятия тигля с печи, а ложка применяется для удаления шлака, который образуется на поверхности расплава.
  3. Чтобы вылить из тигля расплавленную латунь в форму используется литейный ковш. Без этого приспособления невозможно выполнить безопасный наклон раскалённого тигля во время плавильных работ.

Работы с расплавом должны производиться без каких-либо отступлений от правил техники безопасности, поэтому кроме приспособлений для плавления обязательно следует приобрести защитную одежду, средства защиты зрения и дыхания.

При расплавлении латуни образуются вредные пары, которые негативно воздействуют на здоровье человека.

  1. Осуществлять плавильные работы без респиратора категорически запрещено. Специальные очки или маска используются для защиты глаз от воздействия инфракрасного излучения, которое, при длительном воздействии, может нанести ущерб органу зрения.
  2. Также необходимо использовать жароупорный фартук для защиты одежды от возможного попадания расплавленного металла и толстые перчатки, чтобы не обжечь руки во время плавильных работ.

Когда все необходимые инструменты и приспособления будут приобретены, можно приступать к подготовке плавления латуни.

Подготовительные работы

Чтобы плавление медного сплава было произведено по всем правилам, необходимо подготовить инструменты и место для работы.

Оптимальным вариантом размещения печи для плавки латуни является навес на свежем воздухе. Установка печи на улице позволяет минимизировать вредное влияние паров цинка, а также обеспечить хорошее горение топлива, при использовании газовой печи.

В плане противопожарной безопасности размещение высокотемпературной печи вне помещения является наиболее правильным. Если нет возможности установить плавильную печь таким образом, то помещение, в котором планируется проводить плавильные работы, должно быть оборудовано системой принудительной вентиляции воздуха.

Поверхность, на которую устанавливается печь, вне зависимости от места размещения, должна быть обязательно изготовлена из негорючих материалов. Также для безопасного перемещения тигля с расплавленным металлом рекомендуется установить ящик с сухим песком. Для предотвращения разбрызгивания расплавленного металла, работы по заливке форм рекомендуется проводить только над ёмкостью с песком.

  1. Если для получения расплава будет применяться металлический лом, то прежде чем приступить к плавке следует тщательно очистить латунную поверхность от загрязнения и краски.
  2. При использовании проката цветного металла его достаточно нарезать на куски, размер которых не будет превышать параметры тигля плавильной печи.

Такие подготовительные работы позволят получить более качественное плавление металла с меньшим количеством шлака, а сам процесс будет более пожаробезопасным.

Процесс плавления латуни

После проведения подготовительного этапа можно приступать к непосредственному плавлению медного сплава.

Работа осуществляется в такой последовательности:

  1. В печи нагреваются формы до температуры +100 градусов. Также необходимо хорошо прогреть ложку перед использованием. Такая процедура необходима для полного испарения влаги с поверхности инструментов. После прогревания, формы необходимо разместить на сухом песке.
  2. Заранее подготовленный латунный лом или измельчённый металлический прокат для плавления, закладывается в тигель в необходимом количестве.
  3. Прогревается печь до температуры +500 градусов.
  4. Тигель с латунью устанавливается в печь и температура повышается до 950 градусов.
  5. Когда металл полностью расплавится с его поверхности необходимо аккуратно с помощью ложки удалить образовавшийся шлак и продукты окисления.
  6. Когда латунь приобретёт яркий жёлтый цвет можно приступать к заполнению заранее подготовленных форм. Для этой цели тигель извлекается специальными щипцами из печи и устанавливается на литейный ковш. Затем производится заполнение форм расплавом.

Если необходимо продолжить плавления металла, то тигель необходимо снова наполнить подготовленным материалом и установить в плавильную печь.

Советы и рекомендации

  1. На рынке представлено большое количество печей для плавки металлов и не всегда удаётся сделать правильный выбор устройства. Особенно при отсутствии опыта плавильных работ. Чтобы печь можно было использовать не только для плавки латуни рекомендуется выбрать устройство с возможностью разогрева до 1300 градусов. Например, температура плавления бронзы составляет около 1150 градусов и маломощные приборы не позволят осуществить плавление данного цветного сплава.
  2. Для каждого вида цветного металла необходимо использовать отдельный тигель, поэтому в ёмкости в которой расплавлялась латунь не рекомендуется плавить бронзу или любой другой металл или сплав.
  3. Не рекомендуется надевать одежду из синтетики во время выполнения плавильных работ. Такая ткань легко возгорается и плавится. В случае возникновения пожара может послужить причиной получения серьёзных ожогов.
  4. В непосредственной близости от места, где будет установлена плавильная печь необходимо разместить ёмкость с холодной водой. Такая предохранительная мера позволит, в случае получения ожога, моментально снизить температуру поражённого участка тела.
  5. Огнетушитель обязательно должен быть расположен в прямой доступности от места, где производятся плавильные работы.
  6. Момент полного расплавления латуни можно определить на глаз.

    Выливать изделия из данного сплава необходимо когда поверхность расплавленного металла начнёт светиться жёлтым цветом с небольшим оранжевым отливом.

  7. Во время плавления, латунь категорически запрещается перемешивать. Такое действие может привести к образованию пузырьков воздуха, что негативно отразится на плотности материала, его механических и эстетических свойствах.
  8. Точная температура плавления латуни зависит от её марки.

    При определении точки плавления опытным путём необходимо соблюдать осторожность и не слишком перегревать смесь, чтобы не ускорить процесс окисления металлического сплава.

  9. Печь для плавки латуни можно изготовить самостоятельно, но только при наличии специальных знаний. Если в этом деле возникнут трудности можно обратиться за консультацией к опытным умельцам.

Значительно сэкономить можно и в случае замены графитового тигля на изделие из керамики.

Если приобрести специальную огнеупорную глину, то можно научиться самостоятельно изготавливать ёмкости для плавильных печей.

Керамические тигли обладают значительно меньшим ресурсом, но в случае, когда возможно самостоятельное изготовление таких деталей экономия денег будет значительной.

Заключение

При какой температуре плавится медь и её сплавы рассказано в статье, но только теоретических знаний недостаточно для того, чтобы стать профессионалом в этом деле.

После того как печь для плавки латуни будет приобретена или смонтирована, необходимо расплавить небольшое количество металла для проверки работоспособности оборудования. И получения опыта плавления медных сплавов в домашних условиях.

(4 3,75 из 5)

Источник: https://plavitmetall.ru/obrabotka/temperatura-plavleniya-latuni.html

Температура плавления золота: чему равна, способы расплавить жёлтый металл в домашних условиях | мк-союз.рф

Какой температуре плавится металл

Здравствуйте, мои читатели! В детстве я думал, что если прокипятить мамино кольцо в кастрюльке, оно расплавится. Мне очень хотелось увидеть, как плавится металл, и я успел провести с десяток экспериментов, пока мама не узнала, что у нее растет металлург. Ни один опыт не увенчался успехом, потому что температура плавления золота 1064,4 °C (градуса по Цельсию), а вода кипит всего при 100 °C.

Теперь я вырос и знаю, что все не так просто. Но плавление золота дома все же возможно, правда, для этого требуется нечто большее, чем просто кастрюлька и газ.

Золото — среднеплавкий металл: такими считаются те, что плавятся (переходят из твердого состояния в жидкое) при температуре от 600 °C до 1600 °C. Под определение среднеплавких подходят многие металлы (никель, железо, кобальт, серебро) и сплавы (сталь, латунь, чугун). Золото можно плавить при помощи приспособлений, пригодных для большинства металлов. Температура кипения золота — 2700 °C. Кроме того, оно обладает:

  • высокой пластичностью и ковкостью,
  • очень высокой плотностью,
  • низкой твердостью.

Из слитка чистого золота можно выковать тонкую проволоку, не прибегая к использованию высокотехнологичного оборудования. Обладая несложным инструментарием и навыками, теоретически это возможно даже дома, потому что золото очень податливо и легко поддается обработке.

Как происходит переработка золотого сырья

Перед тем как превратиться в слиток, монету или украшение, драгметалл проходит многоэтапную обработку. Шихта — материал, подлежащий отправке в плавильную печь — может состоять как из крупиц золота, добытого в природе, так и из лома (часового, ювелирного, технического, стоматологического). Предварительные манипуляции направлены на то, чтобы сделать эту смесь максимально однородной перед плавлением. Для этого заводы по переработке подвергают сырье таким процедурам:

  1. Механическая очистка: дробление крупных кусков, измельчение и просеивание под струей воды или раствора с добавлением абразива, который дополнительно отмывает шихту от грязи.
  2. Химическая очистка от примесей — аффинаж. Вариатны: амальгамирование, растворение в царской водке или выщелачивание — цианированием или при помощи теокарбамидных растворов.
  3. Осаждение металла из полученных растворов.

В результате очистки в распоряжении рабочего завода (или частного ювелира) оказывается золото — в количестве намного меньшем, чем исходная шихта, зато практически чистое.

Можно приступать к плавке.

При какой температуре плавится

Говоря о температуре 1064,4 °C, я имел в виду чистое золото 999 пробы. Мы с вами можем встретить его только в виде банковских слитков (или если сами займемся аффинажем). В ювелирном деле, промышленности и медицине используется разбавленный — легированный металл.

В украшения лигатура вводится для прочности, в припои — для повышения текучести и достижения нужных параметров сплава для пайки изделий каждой пробы (цвета, плавкости). Вот сравнительная таблица температур, при которых плавятся пробы с разным процентным и качественным содержанием лигатуры:

Цвет Проба Au (золото) Ag (серебро) Pd (палладий) Cu (медь) t (°C)
желтый 375 ~37.5 % ~10 % ~3.8 % остальное 926–949
желтый 585 ~58.5 % ~8 % нет остальное 878–905
зеленый 585 ~58.5 % ~30 % нет остальное 835–880
красный 585 ~58.5 % нет нет остальное 907–922
желтый 750 ~75 % ~17 % нет остальное 920–930
розовый 750 ~75 % ~12.5 % нет остальное 900–920
белый 750 ~75 % ~5 % ~20 % нет 1270–1280

Необходимость изменить температуру плавления сплава особенно часто возникает при изготовлении припоев. Понижают температуру плавления золота более легкоплавкие добавки:

  • цинк,
  • олово,
  • магний,
  • алюминий,
  • серебро (незначительно).

Повышают температуру плавления более тугоплавкие металлы и их сплавы — в ювелирном деле и промышленности это в основном платиновая группа:

  • платина,
  • палладий,
  • осмий.

Большинство интерметаллических сплавов хрупкие, поэтому для создания украшений они почти не применяются, а к промышленному использованию годны ограниченно.

Способы плавления и температура процесса

На заводах для плавления золота есть специальные плавильные печи, где без труда создается температура 1200 °C и выше. Дома невозможно установить такую. Ювелиры пользуются портативными плавильными печками, например индукционными. Некоторые любители плавят металлы в микроволновых печах, но в такой микроволновке больше будет нельзя готовить еду — учтите это перед тем, как выбрать свой метод.

«Классический» способ частных золотодобытчиков и ювелиров, не работающих с большими объемами сырья, — газовая или бензиновая горелка с инжектором и тигель — огнеупорная емкость, подходящая по размеру.

Можно ли расплавить золото в домашних условиях

Можно! Но нужно подготовиться.

Необходимое оборудование и материалы

Для самостоятельного изготовления отливок потребуются:

  • тигель для плавления — керамический или графитовый, устойчивый к высоким температурам,
  • горелка и топливо для нее,
  • металлические щипцы,
  • форма, в которую вы будете переливать расплавленное золото (изложница),
  • бура (тетраборат натрия, его можно купить в аптеке) в качестве флюса для очистки расплава,
  • деревянная или графитовая палочка для помешивания,
  • доступ к чистой воде,
  • вспомогательные емкости, салфетки, защитные аксессуары (перчатки, маска).

Подготовка шихты

Скорее всего, имеющееся в наличии сырье можно уместить в ладони, поэтому не будем имитировать заводской технологический процесс, а просто проверим лом на наличие ненужного мусора. Если у вас в руках аффинированный металл, то, вероятно, он уже измельчен и пригоден к плавлению — его достаточно промыть.

Если наша шихта — ювелирный лом, переплавить мы его сможем, но на выходе получится не чистый слиток, а сплав неизвестной пробы (как правило, мы не знаем, что и в каких пропорциях входит в состав украшений). Лом нужно тщательно измельчить перед плавлением.

Процесс плавки

Не забудьте надеть перчатки, темные очки и морально подготовиться к плавлению. Плавить золото нужно в чистом просушенном тигле, посыпав бурой и тигель, и шихту. Когда смесь буры и золота станет однородной, нужно посыпать расплав порошком вторично.

Подносите пламя горелки к золоту аккуратно, особенно если оно находится в тигле в виде мелких крупиц, чтобы не сдуть частицы металла. Не направляйте пламя на само золото: для начала аккуратно поводите огнем над ним. Нагревайте тигель постепенно и осторожно.

Работа занимает от 10 минут и более в зависимости от качества сырья. Через некоторое время дайте золоту слегка застыть и посмотрите на него. Если по мере затвердевания расплав мутнеет, значит, процесс не окончен и нужно использовать буру снова.

Когда характерный желтый блеск перестанет исчезать при остывании, плавление можно считать завершенным.

Получение отливок

Расплавленное золото заливается в подготовленную форму. Лучше, если она будет изготовлена из того же материала, что и тигель. Через несколько минут, когда слиток немного остынет, вы сможете взять его щипцами и опустить в воду.

Как очистить отливки

После того как бура сослужит свою службу и очистит расплавленное золото от лишних соединений, придется избавить слиток от остатков самой буры. Для окончательной очистки потребуются:

  • соляная кислота — 20 мл,
  • азотная кислота — 10 мл,
  • дистиллированная вода — 0,5 л,
  • огнеупорная колба,
  • электроплитка.

Отливку нужно прокипятить в растворе кислот в течение 5 минут и промыть чистой водой. Эту часть эксперимента лучше проводить на открытом воздухе, например на дачном участке: испарения кислот токсичны.

Латунь: разновидности и температура плавления

Какой температуре плавится металл

При какой температуре плавится латунь? Стоит ли плавить ее в домашних условиях? Как происходит лазерная резка латуни? Этими вопросами задавался каждый, кто сталкивался с потребностью изготовить что-либо из сплава меди и цинка. От правильно выбранного температурного режима зависит скорость плавки латуни и качество будущего изделия. Чтобы избежать порчи материала, ознакомьтесь с полезной информацией.

Где применяется латунь

Такой цветной металл, как латунь, представляет собой сплав меди и цинка (до 50%) с возможными примесями небольшого количества легирующих элементов. Она имеет высокую тепло- и электропроводность, плотность в пределах 8300—8800 кг/м3 и прочность  до 600 Мн/м2. Благодаря этим качествам, а также привлекательному золотисто-желтому цвету, латунь широко используется:

  • В искусстве. Статуэтки, бюсты известных деятелей часто изготавливаются из этого материала, так как он хорошо поддается воздействию высоких температур. К тому же в поиске идеальных форм готовую скульптуру всегда можно переплавить.
  • При дизайне интерьера и экстерьера. Стильные светильники, рамы для зеркал, столешницы из сплава меди и цинка создают атмосферу 1970-х и модерна середины века и выполняют утилитарные функции. Чтобы сплав не почернел под воздействием воздуха, изделия покрываются защитными составами.
  • В промышленности. Сплав меди и цинка обладает низким коэффициентом трения, поэтому им часто покрывают трущиеся поверхности подшипников и прочих деталей, выпускают из него механизмы для наземного и водного транспорта, фурнитуру и т.д.изделия из латуни
  • В строительстве. Бронза и латунь устойчивы к коррозии, поэтому изделия из них могут применяться в условиях высокой влажности. Запорная и балансировочная латунная арматура распространена при монтаже водопроводов.

Разновидности латуни

В зависимости от состава химических веществ, латуни подразделяются на:

  • Двухкомпонентные, или простые. Такие сплавы включают в себя преимущественно медь и цинк, количество иных элементов незначительно. В свою очередь, среди них выделяются:
  1. Альфа-латуни, или однофазные. В них содержится менее 39 % цинка, поэтому нет необходимости доводить температуру плавления до 905 °C, чтобы он растворился в меди.
  2. Бета-латуни, или двухфазные. Вторая фаза латуни возникает, если в составе сплава находится большее количество цинка, чем то, которое может раствориться. Как правило, b-латуни не такие пластичные, как а-латуни, но более прочные.
    классификация латуней по химическому составу
  • Многокомпонентные, или специальные. Они состоят из меди, цинка и таких легирующих элементов, как железо, олово, кремний, алюминий, марганец и свинец.

По  степени и качеству обработки латуни бывают:

  • Деформируемые. Для изготовления деталей используются такие состояния деформируемых латуней, как особо твердое (с обжатием >50%),твердое (с обжатием >30%), полутвердое (с обжатием  10-30 %) и мягкое (отожженные сплавы). Смесь меди и цинка представлена в виде трубок с круглым сечением, проволоки, лент, листов.
  • Литейные. Литейная латунь — легкоплавкая разновидность, содержащая в себе не менее 50-80% меди, остальное – цинк и легирующие элементы. Сюда относятся полученные латунные изделия, а также арматура.

При какой температуре плавится латунь

Без знания о том, при скольких градусах плавится латунь и как ее плавить, невозможно будет не только отлить детали из сплава меди и цинка, но и осуществить лазерную резку латуни. Неправильно подобранная температура для обработки приведет к ухудшению качеств сплава и излишним энергозатратам.

Температура плавления латуни составляет 880-950 °C. Этот показатель изменяется в зависимости от химического состава сплава. Удельная теплота плавления латуни не совпадает с температурой литья. Особенно хорошо это заметно при плавке свинцовых латуней, которые имеют сниженную текучесть. Разница между температурами их плавления и литья составляет 145-185 °C.

Например, латунь марки ЛС59-1В плавится при температуре 900° C, но литье можно осуществлять при 1030-1080 °C. Для марок ЛС59-1 и ЛС74-3 эти показатели составляют 885-895 °C /  1030-1080 °C и 965° C / 1120-1160 °C соответственно, и т. д. У двухкомпонентных латуней температуры плавления и литья совпадает.

Например, у Л60 это 885-895 °C, Л80 -965-1000° C, Л96 – 1055-1070 °C.

Удельная теплоемкость латуни составляет 380 Дж/(кг °С). Иначе говоря, чтобы нагреть 380 кг до температуры 1 °С, необходимо потратить 1 Дж энергии.

    режимы обработки простых и свинцовых латуней

Обратите внимание: чем больше находится в латуни свинца и висмута, тем проблематичней ее будет расплавить. Наиболее быстро плавится латунь, содержащая в себе большое количество цинка. Сплавы, где количество этого элемента доходит до 32,5 %, можно обрабатывать и без нагревания, с помощью протяжки или прокатки.

Для чего необходима плавка латуни

Как правило, латунь плавится прежде, чем из нее изготовят фасонные части, конденсационные трубы, сепараторы, червячные винты, втулки, а также иные детали, предназначенные для использования при высоких температурах (до 300 градусов по Цельсию).

Плавят латунь для отливки перил, карнизов, дверных ручек, декоративных панно, рам для зеркал и картин. Из этого сплава могут быть отлиты и кухонные принадлежности: чайники, самовары, подносы, хлебницы, декоративная посуда для размещения на стене.

Для изготовления сувениров и украшений также пригодится смесь меди и цинка.

Зная, как расплавить латунь, можно осуществить это в домашних условиях. В быту из расплавленной латуни отливают больстеры, затыльники, мебельную и оконную фурнитуру и т.д.

Расплавить латунь в домашних условиях

Оборудование для плавки латуни в домашних условиях представляет собой индукционную печь из огнеупорных материалов, тигель из графита или шамотного кирпича, литейный ковш, стальные щипцы и объемную ложку. Перед тем как плавить металл, тигель необходимо на протяжении 20-30 минут прокалить при температуре не менее 95 °С. Ложка необходима для удаления шлака, щипцы – для вынимания тигля из печи, а ковш – для поддержки тигля при разливании металла.

    плавка латуни в домашних условиях

Для обеспечения безопасности земля должна быть застелена асбестовым листом, а расплавленный металл нужно проносить к формам строго над ящиком с песком. Обязательно наличие специальной экипировки. Чтобы избежать отравления токсичными веществами, печь стоит расположить на открытом воздухе или в хорошо проветриваемом помещении.

Когда оборудование будет готово к работе, подлежащий плавлению материал измельчают и помещают в тигель, который отправляется в печь. Тигель должен оставаться в печи до полного расплавления металла. Проследить этот процесс можно через окошко, если печь заводского производства, или же периодически приподнимая огнеупорную крышку, если печь самодельная. Жидкая латунь выливается в форму, где должна остыть перед окончательной обработкой.

Расплавить латунь в домашних условиях можно и с помощью газовой горелки. Для этого ее размещают под емкостью, в которой находится измельченный сплав. Равномерно прогревая дно емкости, можно добиться жидкого состояния металла.

Учтите, что во время плавки необходимо предотвращать появление даже мелких пузырьков, которые могут испортить качество будущего изделия. Расплавленный металл перемешивать нельзя, даже во время удаления шлака с его поверхности.

Можно ли паять латунь

Многих новичков, как правило, волнуют вопросы: паяется латунь или нет и до скольки градусов ее можно нагревать. Ответ однозначный: паять латунь можно. Произвести спайку латунных поверхностей вполне реально, хоть и потребуется больше сноровки, чем при соединении обычным припоем.

Припой для латуни должен состоять из меди и серебра, соединенных в соотношении 1 к 2. Размещенные на асбестовом основании детали смачивают флюсом (бура, борная кислота, вода), посыпают измельченным припоем, затем нагревают газовой горелкой.

Температура не должна превышать 700° C во избежание деформации деталей, нагрев нужно производить постепенно.

Разница между температурами плавления припоя и латунных деталей не превышает 50 °С, поэтому при перегреве есть риск получить вместо качественного изделия большой слиток. Если работа была проделана качественно, то шов будет иметь такой же цвет, как и латунная поверхность детали. Это объясняется химической диффузией. Последний этап пайки – удаление остатков флюса. Для этого используется горячая трехпроцентная серная кислота, которая затем смывается с изделия водой.

Источник: https://svarkaed.ru/svarka/poleznaya-informatsiya/latun-raznovidnosti-i-temperatura-plavleniya.html

Особенности, температура и способы плавления золота

Многие покупатели золота задумываются, почему этот драгметалл настолько дорогой? Но кроме внешнего вида золота, привлекательного цвета и красоты, у него есть масса преимуществ с химической и физической точек зрения. Например, плотность, ковкость, температура плавления золота — вот те особенности металла, которые используются в ювелирном деле, промышленности, медицине.

Как плавят золото

Свойства золота, за которые ценится металл

Золото в природе находится в виде крупинок, частиц или самородков. Поэтому металл, прежде чем попадает в банки или магазины, требует обработки. Процедура проводится на заводах, но ее можно реализовать и дома, если знать последовательность стадий. Переработка металла происходит следующим образом:

  • Механическая очистка золота от примесей. Это происходит с помощью напора воды с растворами, которые дополнительно отмывают золото от грязи и налета.
  • Химическая очистка, или аффинаж, золота, который отделяет золото от других металлов или руды. Чаще всего золото очищают от примесей с помощью царской водки, смеси азотной и соляной кислот.
  • Осаждение золота.
  • Плавление металла. Изготовление слитков, кусков металла или изделий разной формы. Для процесса необходимо знать, при какой температуре плавится золото. Тогда из бесформенного драгметалла можно получить изделие или слиток.

Кроме того, золото обладает:

Высокой стойкостью по отношению к действию атмосферы. Оно не поддается коррозии, в отличие от других металлов, и не меняет вид со временем, даже находясь в земле. А в виде украшений золото также сложно подвергается химическим реакциям.

Золото — ковкий металл. Его пластичность позволяет изготавливать изделия различной формы. Сусальное золото — тонкие листы из драгметалла, которые можно раскатать толщиной 0,01 мм и при этом они будут сохранять свою целостность. По шкале мягкости Мооса драгметалл получил значение 2,5–3,0 из максимальных десяти. Это значит, что в чистом виде золото можно поцарапать даже ногтями.

Плотность золота также добавляет ему ценности. Металл в 19,3 раза плотнее, чем вода. Это свойство позволяет облегчить процедуру поиска и отмывания золота в месторождениях.

У металла хорошая электропроводимость и низкая сопротивляемость. Но чтоб использовать золото в промышленных масштабах, нужны слишком большие затраты, и самого сырья в природе не хватит для подобных целей.

Но в микросхемах и датчиках иногда используют золото, для улучшения контактов. Поэтому небольшое количество драгметалла можно найти, если порыться в старой технике.

А потом возникает вопрос: как расплавить золото в домашних условиях и можно ли это сделать? В принципе это можно осуществить, особенно если золото более низкой пробы.

Золотые самородки

Рекомендуем другие статьи

Источник: https://DedPodaril.com/zoloto/imform/temperatura-plavleniya-zolota.html

При какой температуре металл краснеет

Уже в древности люди добывали и плавили медь. Этот металл широко применялся в быту и служил материалом для изготовления различных предметов. Бронзу научились делать примерно 3 тыс. лет назад. Из этого сплава делали хорошее оружие. Популярность бронзы быстро распространялась, так как металл отличался красивым внешним видом и прочностью. Из него делали украшения, орудия охоты и труда, посуду. Благодаря небольшой температуре плавления меди человек быстро освоил ее производство.

Свое латинское название Cuprum металл получил от названия острова Кипр, где его научились добывать в третьем тысячелетии до н. э. В системе Менделеева Сu получил 29 номер, а расположен в 11-й группе четвертого периода.

В земной коре элемент на 23-м месте по распространению и встречается чаще в виде сульфидных руд. Наиболее распространены медный блеск и колчедан. Сегодня медь из руды добывается несколькими способами, но любая технологий подразумевает поэтапный подход для достижения результата.

  • На заре развития цивилизации люди уже получали и использовали медь и ее сплавы.
  • В то время добывалась не сульфидная, а малахитовая руда, которой не требовался предварительный обжиг.
  • Смесь руды и углей помещали в глиняный сосуд, который опускался в небольшую яму.
  • Смесь поджигалась, а угарный газ помогал малахиту восстановиться до состояния свободного Cu.
  • В природе есть самородная медь, а богатейшие месторождения находятся в Чили.
  • Сульфиды меди нередко образуются в среднетемпературных геотермальных жилах.
  • Часто месторождения имеют вид осадочных пород.
  • Медяные песчаники и сланцы встречаются в Казахстане и Читинской области.

Физические свойства

Металл пластичен и на открытом воздухе покрывается оксидной пленкой за короткое время. Благодаря этой пленке медь и имеет свой желтовато-красный оттенок, в просвете пленки цвет может быть зеленовато-голубым. По уровню уровнем тепло- и электропроводности Cuprum на втором месте после серебра.

  • Плoтность — 8,94×103 кг/ м3 .
  • Удельная теплоемкость при Т=20 ° C — 390 Дж/кг х К.
  • Электрическoе удельное при 20−100 ° C — 1,78×10−8 Ом/м.
  • Температура кипeния — 2595 ° C.
  • Удельная электропрoводность при 20 ° C — 55,5−58 МСм/м.

При какой температуре плавится медь

Плавления происходит, когда из твердого состояния металл переходит в жидкое. Каждый элемент имеет собственную температуру плавления. Многое зависит от примесей в металле. Обычная температура плавления меди — 1083 ° C. Когда добавляется олово, температура снижается до 930- 1140 ° C. Температура плавления зависит здесь от содержания в сплаве олова. В сплаве купрума с цинком плавление происходит при 900- 1050 ° C .

При нагреве любого металла разрушается его кристаллическая решетка. По мере нагревания повышается температура плавления, но затем выравнивается по достижении определенного предела температуры. В этот момент и плавится металла. Полностью расплавляется, и температура повышается снова.

Когда металл охлаждается, температура снижается, в определенный момент остается на прежнем уровне, пока металл не затвердеет полностью. После полного затвердевания температура снижается опять.

Это демонстрирует фазовая диаграмма, где отображен температурный процесс с начала плавления до затвердения. При нагревании разогретая медь при 2560 ° C начинает закипать. Кипение подобно кипению жидких веществ, когда выделяется газ и появляются пузырьки на поверхности.

В момент кипения при максимально больших температурах начинается выделение углерода, образующегося при окислении.

Плавление в домашних условиях

Благодаря низкой температуре плавления древние люди могли расплавлять купрум на костре и использовать металл для изготовления различных изделий.

Для расплавки меди в домашних условиях понадобится:

  • древесный уголь;
  • тигель и специальные щипцы для него;
  • муфельная печь;
  • бытовой пылесос;
  • горн;
  • стальной крюк;
  • форма для плавления.

Процесс течет поэтапно, металл помещается в тигель, а затем размещается в муфельной печи. Выставляется нужная температура, а наблюдение за процессом осуществляется через стеклянное оконце. В процессе в емкости с Cu появится окисная пленка, которую нужно устранить — открыть окошко и отодвинуть в сторону стальным крюком.

  Из какого металла делают рельсы

При отсутствии муфельной печи расплавить медь можно автогеном. Плавление пойдет, если ест нормальный доступ воздуха. Паяльной лампой расплавляется латунь и легкоплавкая бронза. Пламя должно охватить весь тигель.

Если под рукой ничего из перечисленных средств нет, можно использовать горн, установленный на слой древесного угля. Для повышения Т можно использовать пылесос, включенный в режим выдувания, но шланг должен иметь металлический наконечник, хорошо, если с зауженным концом, так струя воздуха будет тоньше.

Температура плавления бронзы и латуни, как температура плавления меди и алюминия — невысоки.

Сегодня в промышленных условиях в чистом виде Cu не используется. В ее составе содержится много примесей: никель, железо, мышьяк, сурьма, другие элементы. Качество продукта определяется наличием содержания в процентах примесей в сплаве (не более 1%). Важные показатели — тепло- и электропроводность. Благодаря пластичности, малой Т плавления и гибкости медь широко используется во многих отраслях промышленности.

Источник: http://ooo-asteko.ru/pri-kakoy-temperature-metall-krasneet/

Оптимальные показатели температуры плавления стали

У каждого отдельного металла есть ряд индивидуальных физических, химических свойств, которые обуславливают сферы его применения. Метод плавки позволяет создавать из материала изделия разной формы. Чтобы изготавливать стальные конструкции, необходимо знать температуру плавления стали.

Температура плавления стали

  • Классификация металлов
  • Принцип расчета
  • Как происходит процесс?

Классификация металлов

Человеку давно известны температуры плавления металлов и сплавов. Благодаря этим данным их можно разделить на три больших группы:

  1. Легкоплавкие металлы — плавятся до 600 градусов по Цельсию. К ним относятся олово, цинк, свинец.
  2. Среднеплавкие — плавятся в диапазоне 600–1600 градусов по Цельсию. Наиболее обширная группа, в которую входят все возможные сплавы, однородные материалы.
  3. Тугоплавкие — расплавляются при 1600 градусов по Цельсию. К ним относится титан, хром, молибден, вольфрам.

Чтобы узнать более точную информацию, можно изучить таблицу температур плавления металлов. Найти ее можно в интернете или специальных справочниках для литейщиков. Если говорить о сплавах, то их теплота плавления будет зависеть от количества примесей, содержащихся в составе.

Принцип расчета

Раньше, чтобы рассчитать температуру плавления металла использовали формулу Линдемана. Однако из-за низкой точности конечных расчетов, она не получила большой популярности среди литейщиков. В 1999 году, И.В. Гаврилин предложил новую систему расчета температуры кипения и плавления:

Тпл = DHпл / 1,5 N0 k,

Расшифровка:

  1. Тпл — температура плавления.
  2. DHпл — обозначает скрытую температуру плавления.
  3. N0 — обозначение скрытой теплоты плавки.
  4. k — Обозначение константы Больцмана.

Как происходит процесс?

Чтобы провести процесс плавки, необходимо знать не только температуру плавления стали, но и использовать промышленное оборудование. Технология состоит из трех основных этапов:

  1. Плавка породы. Этот этап подразумевает под собой переплавку шихты до образования ванны расплавленного металла. Важно, чтобы из образующейся ванны удалялся фосфор. Для этого шлаки должны содержать оксид железа. Температурные показатели не должны доходить до критических.
  2. Следующий этап — закипание ванны расплавленной шихты. Для закипания жидкой массы увеличивается температурный режим. При этом интенсивно окисляется углерод. Если он не будет окислять, технологических процесс остановится. Чтобы сделать процесс более интенсивным, в ванну вдувают чистый кислород.
  3. Третий этап — раскисление металла. Этот процесс нужен чтобы снизить количество кислорода в расплавленной массе. Для этого может применяться два метода — осаждающий, диффузный. Первый представляет собой добавление в расплавленную массу ферромарганца, ферросилиция, алюминия. Второй метод идентичен первому.

Чтобы улучшить качество стали, расплавленную массу дополнительно обрабатывают, после того как сольют из печи. Для этого проводится обдувка аргоном.

Оптимальные показатели температуры плавления стали Ссылка на основную публикацию

Источник: https://metalloy.ru/stal/temperatura-plavleniya

При какой температуре плавится сталь — Справочник металлиста

Сталь — это сплав железа, к которому примешивают углерод. Её главная польза в строительстве — прочность, ведь это вещество длительное время сохраняет объем и форму. Все дело в том, что частицы тела находятся в положении равновесия. В этом случае сила притяжения и сила отталкивания между частицами являются равными. Частицы находятся в чётко обозначенном порядке.

  • Температуры плавления стали
  • Нержавеющая сталь
  • Чугун и сталь

Есть четыре вида этого материала: обычная, легированная, низколегированная, высоколегированная сталь. Они отличаются количеством добавок в своём составе. В обычной содержится малое количество, а дальше возрастает. Используют следующие добавки:

  • Марганец.
  • Никель.
  • Хром.
  • Ванадий.
  • Молибден.

Температуры плавления стали

При определённых условиях твёрдые тела плавятся, то есть переходят в жидкое состояние. Каждое вещество делает это при определённой температуре.

  • Плавление — это процесс перехода вещества из твёрдого состояния в жидкое.
  • Температура плавления — это температура, при которой твёрдое кристаллическое вещество плавится, переходит в жидкое состояние. Обозначается t.

Физики используют определённую таблицу плавления и кристаллизации, которая приведена ниже:

Вещество t,°C Вещество t,°C Вещество t,°C
Алюминий 660 Медь 1087 Спирт — 115
Водень — 256 Нафталин 80 Чугун 1200
Вольфрам 3387 Олово 232 Сталь 1400
Железо 1535 Парафин 55 Титан 1660
Золото 1065 Ртуть — 39 Цинк 420

На основании таблицы можно смело сказать, что температура плавления стали равна 1400 °C.

Нержавеющая сталь

Нержавеющая сталь — это один из многих железных сплавов, которые содержатся в стали. Она содержит в себе Хром от 15 до 30%, который делает её ржаво-устойчивой, создавая защитный слой оксида на поверхности, и углерод. Самые популярные марки такой стали зарубежные. Это 300-я и 400-я серии.

Они отличаются своей прочностью, устойчивостью к неблагоприятным условиям и пластичностью. 200-я серия менее качественная, но более дешёвая. Это и является выгодным для производителя фактором.

Впервые её состав заметил в 1913 году Гарри Бреарли, который проводил над сталью много разных экспериментов.

На данный момент нержавейку разделяют на три группы:

  • Жаропрочная — при высоких температурах имеет высокую механическую прочность и устойчивость. Детали, которые из неё изготавливаются применяют в сферах фармацевтики, ракетной отрасли, текстильной промышленности.
  • Ржаво-стойкая — имеет большую стойкость к процессам ржавления. Её используют в бытовых и медицинских приборах, а также в машиностроении для изготовления деталей.
  • Жаростойкая — является устойчивой при коррозии в высоких температурах, подходит для использования на химических заводах.

Температура плавления нержавеющей стали колеблется в зависимости от её марки и количества сплавов приблизительно от 1300 °C до 1400 °C.

Чугун и сталь

Чугун — это сплав углерода и железа, он содержит примеси марганца, кремния, серы и фосфора. Выдерживает невысокие напряжения и нагрузки. Один из его многочисленных плюсов — это невысокая стоимость для потребителей. Чугун бывает четырех видов:

  • Белый — имеет высокую прочность и плохую способность к обработке ножом. Виды сплава по увеличению количества углерода в составе: доэвтектический, эвтектический, заэвтектический. Его назвали белым из-за того, что в разломе он имеет белый цвет. А также белый чугун обладает особым строением металлической массы и большой изностойкостью. Полезен в изготовлении механических деталей, которые будут работать в среде с отсутствием смазки. Его используют для изготовления приведённых ниже видов чугуна.
  • Серый чугун — содержит углерод, кремний, марганец, фосфор и немного серы. Его можно легко получить, и он имеет плохие механические свойства. Используется для изготовления деталей, которые не подвергаются воздействию ударных нагрузок. В изломе есть серый цвет, чем он темнее, тем материал мягче. Свойства серого чугуна зависят от температуры среды, в которой он находится, и количества разных примесей.
  • Ковкий чугун — получают из белого в результате томления (длительного нагрева и выдержки). В состав вещества входят: углерод, кремний, марганец, фосфор, небольшое количество серы. Является более прочным и пластичным, легче поддаётся обработке.
  • Высокопрочный чугун — это самый прочный из всех видов чугунов. Содержит в себе углерод, марганец, серу, фосфор, кремний. Имеет большую ударную вязкость. Из такого важного металла делают поршни, коленчатые валы и трубы.

Температуры плавления стали и чугуна отличаются, как утверждает таблица, приведённая выше. Сталь имеет более высокую прочность и устойчивость к высоким температурам, чем чугун, температуры отличаются на целых 200 градусов. У чугуна это число колеблется приблизительно от 1100 до 1200 градусов в зависимости от содержащихся в нем примесей.

Источник: https://ssk2121.com/pri-kakoy-temperature-plavitsya-stal/

Тугоплавкие металлы — описание, изделия из тугоплавких Ме

Определение «тугоплавкие металлы» не требует дополнительных пояснений в силу исчерпывающей информативности самого термина. Единственным нюансом остается пороговая температура плавления, после которой вещество можно считать тугоплавким.

Разногласия в критическом параметре

Одни источники устанавливают пороговую величину как 4000 F. В переводе на привычную шкалу это дает 2204 0С. Согласно этому критерию, к жаропрочным относятся только пять элементов: вольфрам, ниобий, рений, тантал и молибден. Например, температура плавления вольфрама составляет 3422 0С.

плавка вольфрама водородной горелкой

Другое утверждение позволяет расширить класс температуростойких материалов, поскольку принимает за точку отсчета температуру плавления железа – 1539 0С. Это позволяет увеличить список еще на девять элементов, включив в него титан, ванадий, хром, иридий, цирконий, гафний, родий, рутений и осмий.

Существует еще несколько пороговых величин температуры, однако они не получили широкого распространения.

Сравнительная таблица степени тугоплавкости чистых металлов

Следует отметить, что тугоплавкие материалы не ограничиваются исключительно металлами. К этой категории относится ряд соединений – сплавы и легированные металлы, разработанных, чтобы улучшить определенные характеристики исходного материала.

Относительно чистых элементов, можно привести наглядную таблицу степени их температурной устойчивости. Возглавляет ее самый тугоплавкий металл, известный на сегодня, – вольфрам с температурой плавления 3422 0С. Такая осторожная формулировка связана с попытками выделить металлы, обладающие порогом расплава, превосходящим вольфрам.

Поэтому вопрос, какой металл самый тугоплавкий, может в будущем получить совсем иное определение.

Пороговые величины остальных соединений приведены ниже:

  • рений 3186;
  • осмий 3027;
  • тантал 3014;
  • молибден 2623;
  • ниобий 2477;
  • иридий 2446;
  • рутений 2334;
  • гафний 2233;
  • родий 1964;
  • ванадий 1910;
  • хром 1907;
  • цирконий 1855;
  • титан 1668.

Остается добавить еще один интересный факт, касающийся физических свойств жапропрочных элементов. Температура плавления некоторых из них чувствительная к чистоте материала. Ярким примером этому выступает хром, температура плавления которого может варьироваться от 1513 до 1920 0С, в зависимости от химического состава примесей. Поэтому, данные интернет пространства часто разнятся точными цифрами, однако качественная составляющая от этого не страдает.

Хром в чистом виде

Общие свойства жаропрочных материалов

Относительная схожесть физико-химических характеристик данных элементов, обусловлена общностью атомного строения и тем, что они оказываются переходными металлами. Напротив, различия в свойствах, связаны с их принадлежностью к широкому спектру групп Периодической таблицы: IV – VII.

Базовая общая характеристика тугоплавких материалов – прочные межатомные связи. Для их разрыва требуется высокая энергия, которая и обуславливает температуру плавления в тысячи градусов по Цельсию. Дополнительно, данное свойство сказывается на высоких значениях таких параметров тугоплавких металлов, как: твердость, механическая прочность, электрическое сопротивление.

Следующая характеристика, объединяющая данные элементы, – высокая химическая активность. Она связана с общей тенденцией тугоплавких металлов образовывать химические связи посредством свободной p- и частично заполненной d-орбитали, отдавая электроны с наружных уровней s и d. Это свойство затрудняет получение чистых тугоплавких металлов, разбивая технологическое производство на несколько этапов.

Строение жаропрочных элементов также идентично, все они характеризуются объемно-центрированной кубической кристаллической решеткой. Для этой структуры характерно «охрупчивание». Исключение составляет рений, обладающий гексагональной ячейкой. Переход в хрупкое состояние для каждого металла происходит при определенной температуре, регулирование которой достигается при помощи легирования.

Каждый тугоплавкий металл, по определению жаропрочный, однако не любой из них жаростойкий. Большинство тугоплавких металлов устойчивы к окислению и действию агрессивных сред: кислоты, щелочи; в обычных условиях.

Однако, с повышением температуры до 400 0С их активность аномально возрастает. Это требует создания определенных условий эксплуатации.

Поэтому, изделия из тугоплавких металлов, при повышенных температурах использования, часто помещают в атмосферу инертных газов или добиваются степени разреженности воздуха до условий вакуума.

Получение тугоплавких материалов

Как отмечалось ранее, основной препятствующий фактор производству жаропрочных металлов их высокая химическая активность, препятствующая выделению элементов в чистом виде.

Основной технологией получения остается порошковая металлургия. Данная методика позволяет получать порошки тугоплавких металлов различными способами:

  1. Восстановление триоксидом водорода. Процесс производится в несколько этапов, внутри многотрубных печей при 750 – 950 °С. Технология применима под порошки тугоплавких металлов: вольфрам и молибден.
  2. Восстановлением водородом перрената. Схема реализуется в производстве металлического рения. Рабочие температуры составляют около 500 °С. Заключительная стадия предусматривает отмывание порошка от щелочи. Для этого последовательно используется горячая вода и раствор соляной кислоты.
  3. Использование солей металлов. Технология развита для выделения молибдена. Основным сырьем выступает аммонийная соль металла и его металлический порошок, вводимый в смесь на уровне 5 — 15% от массы. Состав проходит термическую обработку 500 – 850 °С в проточном инертном газе. Восстановление металла проходит в атмосфере водорода при температурах 800 – 1000 °С.

Производство тугоплавких металлов — порошковая металлургия

Экскурсия на производство

Способы получения жаропрочных металлов продолжают совершенствоваться, как и химическая технология тугоплавких неметаллических и силикатных материалов, что связано с развитием ядерной энергетики, авиастроения, появлением новых моделей ракетных двигателей.

Одно из крупнейших предприятий по производству вольфрама на территории РФ – унечский завод тугоплавких металлов. Этот предприятие относительно молодое, строительство его началось в 2007 году на территории населенного пункта Унеча. Производственный акцент завода направлен на порошки тугоплавких металлов, точнее вольфрама и его карбидов.

В дальнейшем, для получения слитков рассыпчатую массу спекают или сдавливают прессом. Подобным образом порошки тугоплавких металлов обрабатываются для производства жаропрочных изделий.

Применение тугоплавких материалов

Применение чистых жаропрочных металлов имеет приоритеты по ряду направлений:

  • производство космических кораблей;
  • изготовление управляемых снарядов, ракет;
  • электронная и вакуумная техника.

Космическая промышленность

Последний пункт затрагивает электроды электровакуумных радиоламп. Например, высокочистый ниобий используется для производства сеток, трубок электронных деталей. Также из него изготавливаются электроды – аноды электровакуумных приборов.

Электровакуумные радиолампы

Аналогичное применение свойственно молибдену, вольфраму. Эти металлы в чистом виде используются не только как нити накаливания, но и под электроды радиоламп, крючки, подвески электровакуумного оборудования. Монокристаллы вольфрама, напротив, эксплуатируются как подогреватели электродов, в частности катодов, а также при изготовлении электрических контактов, предохранителей.

Чистые ванадий и ниобий используются в ядерной энергетике, где их них изготовлены трубы атомных реакторов, оболочки тепловыделяющих элементов. Область применения высокочистого тантала – химия (посуда и аппаратура), поскольку металл обладает высокой стойкостью к коррозии.

Отдельно следует рассматривать тугоплавкий припой, поскольку он не включает металлов, имеющих высокие температуры плавления. Например, тугоплавкое олово не содержит порошки тугоплавких металлов. В качестве добавок тут используются медь, серебро, никель или магний.

Тугоплавкие металлы и сплавы востребованы как прокат, так и в других сферах. В частности, применение сплавов обусловлено способностью, модифицировать определенные свойства металла: понизить температуру охрупчивания, улучшить жаропорочные характеристики.

Прокат из тугоплавких металлов достаточно широк по ассортименту и включает:

  • полосы обычные и для глубокой вытяжки;

Термоэлектродная проволока вольфрам-рениевая

Наиболее крупным отечественным производителем данного типа продукции выступает опытный завод тугоплавких металлов и твердых сплавов.

тугоплавкие металлы

Источник: http://xlom.ru/spravochnik/tugoplavkie-metally-opisanie-izdeliya-iz-tugoplavkix-me/

Температура расплавления, свойства и самостоятельная плавка чугуна

Чугун – сплав на основе железа и углерода. От стали он отличается содержанием последнего – 2% и больше. В отдельных марках содержится до 4% углерода. Чаще всего используют сплав с содержанием углерода 3-3,5%.

Это литейный материал. Для такого металла на первый план выходят такие его свойства, как температура плавления, а также его тепловые свойства – теплоемкость, теплопроводность, температуропроводность. Как разные химические элементы влияют на качество этого металла и можно ли его плавить самостоятельно – об этом пойдет речь в статье.

Тепловые свойства чугуна

Важная категория физических свойств материала – его тепловые свойства. К ним относятся:

  • Теплоемкость.
  • Теплопроводность.
  • Температуропроводность.
  • Коэффициент теплового расширения.

Все они зависят от состава, структуры, а значит от марки сплава. Кроме того, эти свойства металла меняются с изменением его температуры (так называемое правило смещения). Характер этой зависимости и основные физические свойства приведены в таблице.

Теплоемкость (с)

Это количество теплоты, которое необходимо подвести к телу, чтобы его температура возросла на один Кельвин (далее все величины переведены в градус Цельсия).

Теплоемкость зависит от состава сплава, а также от температуры (Т). Чем выше Т, тем больше теплоемкость. Если температура выше Т фазовых превращений, но ниже Т плавления, то

с = 0,18 кал/(Г˚С)

при Т, превышающей температуру плавления:

с = 0,23±0,03 кал/(Г˚С)

Объемная теплоемкость (отношение теплоемкости к объему вещества) для приблизительных расчетов принята:

  • чугун в твердом состоянии с’ = 1 кал/(см3Г˚С)
  • расплавленный с’ = 1,5 кал/(см3Г˚С)

Теплопроводность (λ)

Это количественная характеристика способности тела проводить тепло. Для теплопроводности не действует правило смещения. Температура материала повышается – λ понижается. Она зависит от состава сплава, а в большей степени от его структуры. Вещества, увеличивающие степень графитизации, повышают теплопроводность, а вещества, препятствующие образованию графита, понижают.

Кстати, теплопроводность расплавленного чугуна намного меньше, чем твердого. Но из-за конвекции она больше, чем λ твердого металла.

Теплопроводность для разных марок лежит в пределах:

λ =0,080,13 кал/ (см·сек оС)

Теплопроводность и другие теплофизические свойства в зависимости от температуры сплава приведены в конце раздела.

Температуропроводность (α)

Это физическая величина, показывающая, насколько быстро меняется температура тела. Равна отношению теплопроводности к объёмной теплоёмкости.

Для приблизительных расчетов можно принять:

α=λ для твердого металла (равна его теплопроводности);

α=0,03 см2/сек для жидкого.

Температура плавления

У этого сплава хорошие литейные свойства. Лучше, чем у стали. Жидкотекучесть высокая, а усадка мала (около 1%). Его можно расплавить при температуре на 300-400 градусов ниже чем у стали. Температура плавления чугуна:

Какой он бывает

Структура чугуна – это железная основа с графитовыми (углеродными) вкраплениями. Этот материал различают не по составу, а по форме углерода в нем:

  • Белый чугун (БЧ). Содержит карбид (цементит) – это форма углерода, такая же, как в стали. Имеет на сломе беловатый цвет. Очень твердый и хрупкий. В чистом виде почти не используется.
  • Серый чугун (СЧ). Содержит углерод в форме пластинчатого графита. Такие включения плохо влияют на качество материала. Для изменения формы зерен графита существуют специальные методы плавки и дальнейшей обработки. Графит в СЧ может быть и в форме волокон («червеобразная» форма) – так называемый вермикулярный графит (от латинского слова vermiculus – червь, как вермишель).
  • Высокопрочный. Шаровидная форма графитовых зерен. Получают введением в сплав магния.
  • Ковкий чугун. Для получения отжигают БЧ. Графитные зерна в виде хлопьев.

В итоге главное отличие его (кроме белого) от стали — наличие структуре графита. А разная форма графита определяет свойства разных марок.

Условно графитные зерна – это пустоты, трещины, а чугун – это сталь, испещренная микроскопическими трещинами.

Соответственно, чем больше пустот, тем хуже качество металла. Имеет значение также форма и взаиморасположение включений.

Однако нельзя принимать графитные зерна как исключительно вредные. Из-за присутствия графита данный материал легче обрабатывать резанием, стружка становится более ломкой. Кроме того, он хорошо противостоит трению также из-за графита.

Примеси

Конечно, этот металл содержит не только железо и углерод. В него входят те же элементы, что и в стальные сплавы – фосфор, марганец, сера, кремний и другие. Эти добавки косвенно влияют на особенности сплава – они изменяют ход графитизации. Именно от этого параметра и зависят качества материала.

  • Фосфор. Мало влияет на образование графита. Но все равно он нужен, потому как улучшает жидкотекучесть. Твердые включения фосфора обеспечивают высокую твердость и износостойкость металла.
  • Марганец. Мешает графитизации, как бы «отбеливает» чугун.
  • Сера. Как и кремний, способствует отбеливанию металла, да еще и ухудшает жидкотекучесть. Количество серы в сплаве ограничивают. Для мелкого литья не больше 0,08%, для деталей больше – до 0,1-0,12%.
  • Кремний. Сильно влияет на свойства материала, увеличивая графитизацию. В металле может содержаться от 0,3-0,5 до 3-5% кремния. Варьируя количество кремния, получают сплав с разными свойствами – от белого до высокопрочного.
  • Магний. Помогает получить материал с шаровидной формой зерен. Градус кипения магния низкий (1107˚С). По этой и другим причинам ввод магния в сплав затруднителен. Чтобы избежать его кипения, выплавку материала ведут с применением различных способов ввода магния.

Кроме обычных примесей, чугун может содержать и другие вещества. Это так называемый легированный материал. Хром, молибден, ванадий мешают процессу образования графита. Медь, никель и большинство других веществ, графитизации способствуют.

Технология самостоятельной плавки

Непромышленное выплавление чугуна – процесс очень трудоемкий. Выплавить своими руками отливки заводского качества в кустарных условиях невозможно.

Дома выплавлять этот металл нельзя. Нужно отдельное вентилируемое помещение – гараж, например. Плавку ведут в печах. В промышленности используют доменные печи, вагранки и индукционные печи.

Доменная печь – промышленный агрегат, способный расплавлять металл в огромных масштабах. В ней можно переплавлять железорудное сырье. После запуска она работает без перерыва до 5-6, а то и до 10 лет. Затем ее останавливают, проводят обслуживание и снова запускают. Расплавление металла проходит в присутствии газов для улучшения качества материала. Для малого и среднего производства такие печи не подходят. Топливо – кокс.

Вагранка – печь шахтного типа, как и доменная. От последней она отличается тем, что в ней не поддерживается специальный состав газов. В ней плавят не руду, а железный лом. Она больше подходит для малого производства.

Индукционная печь – современный тип оборудования. Процессом плавки в такой печи можно управлять, регулировать температуру, время нагрева и состав шихты.

Плавку ведут в тиглях из огнеупорной глины или кирпича. Стальные не подходят, хотя сталь начинает плавиться при температуре большей, чем чугун. Обязателен флюс – вещество, способствующее образованию легкоплавкого шлака. Например, известняк (CaCO3), плавиковый шпат (CaF2). Для получения серого, а не белого чугуна в шихту добавляют ферросилиций (сплав железа с кремнием). Он улучшает образования зерен графита. После расплавления металл выливают в песчаную или металлическую форму.

Литье металла – работа взрыво- и пожароопасная. Кроме того, необходимо обладать определенными знаниями в области металлургии. Для организации производства нужно будет оформить документацию, пройти проверки, получить разрешение и лицензию на работу.

Рекомендуем также к прочтению:

Классификация чугуна и его виды

Источник: https://oxmetall.ru/metalli/chugun/temperatura-plavleniya

Тугоплавкие металлы

Тугоплавкие металлы были выделены в отдельный класс благодаря объединяющему их свойству — высокой температуре плавления. Она выше, чем у железа, которая равна 1539 °C. Поэтому металлы данной группы и получили такое название. Они принадлежат к числу так называемых редкоземельных элементов. Так, например, по распространённости в земной коре ниобий и тантал составляют 3%, а цирконий только 2%.

Тугоплавкие металлы

По температурному показателю плавления кроме перечисленных, к ним относятся металлы, так называемой платиновой группы. Ещё их называют благородными или драгоценными.

Определённая схожесть строения атома обусловила схожесть их свойств. На основании этого можно обобщить некоторые черты проявления таких металлов в земной коре и определиться с технологией их добычи, производства и переработки.

Свойства тугоплавких металлов

За счёт того, что они расположены в соседних группах периодической таблицы, физические свойства у тугоплавких металлов достаточно близкие:

  • Плотность металла колеблется в интервале от 6100 до 10000 кг/м3. По этому показателю выделяется только вольфрам. У него он равен 19000 кг/м3.
  • Температура плавления. Она превышает температуру плавления железа и колеблется от 1950 °С у ванадия до 3395 °С у вольфрама.
  • Удельная теплоёмкость у них незначительно отличается друг от друга и находится в пределах от 200 до 400 Дж/(кг-град).
  • Коэффициент теплопроводности сильно меняется от элемента к элементу. Если у ванадия он равен 31 Вт/(м-град), то у вольфрама он достигает величины в 188 Вт/(м-град).

Физические свойства тугоплавких металлов

Химические свойства также достаточно схожие:

  • Очень похожее строение атома.
  • Обладают высокой химической активностью. Это свойство определяет основные трудности при сохранении стабильности их соединений.
  • Прочность межатомных связей определяет высокую температуру плавления. Это обстоятельство объясняет высокую механическую прочность, твёрдость и электрические характеристики (в частности сопротивление).
  • Проявляют хорошую устойчивость при воздействии различных кислот.

К основным недостаткам тугоплавких металлов относятся:

  • Низкая коррозийная стойкость. Процесс окисления происходит достаточно быстро. Его разделяют на две последовательные стадии. Непосредственное взаимодействие металла с кислородом окружающего воздуха, что приводит к образованию оксидной плёнки. На второй стадии происходит процесс диффузии (проникновения) атомов кислорода через образовавшуюся оксидную плёнку.
  • Трудности со свариваемостью тугоплавких металлов. Это вызвано высокой химической активностью к окружающему воздуху при высоких температурах, хрупкостью при насыщении различными примесями. Кроме того, трудно определить точку перегрева и практически невозможно контролировать повышение предела текучести.
  • Трудности их получения использования в чистом виде без примесей.
  • Необходимость применения специальных покрытий от быстрого окисления. Для сплавов, основу которых составляет вольфрам и молибден, разработаны силицидные покрытия.
  • Трудности, связанные с механической обработкой. Для качественной обработки их сначала необходимо нагреть.

Производство тугоплавких металлов

Все способы производства тугоплавких металлов основаны на методиках так называемой порошковой металлургии. Сам процесс происходит в несколько этапов:

  1. На начальном этапе получают порошок металла.
  2. Затем методами химического восстановления (обычно аммонийных солей или оксидов) выделяют требуемый металл. Такое выделение получается в результате воздействия на порошок водорода.
  3. На завершающем этапе получают химическое соединение, называемое гексафторидом соответствующего металла, и уже из него сам металл.

Применение тугоплавких металлов

Начиная со второй половины двадцатого века тугоплавкие металлы стали применяться во многих отраслях промышленного производства. Порошки тугоплавких металлов используются для производства первичной продукции. Тугоплавкие металлы вырабатывают в виде проволоки, слитков, арматуры, прокатного металла и фольги.

Отдельное место такие металлы занимают в технологии выращивания лейкосапфиров. Они относятся к классу монокристаллов и называются искусственными рубинами.

Изделия из тугоплавких металлов входят в состав бытовых и промышленных электрических приборов, огнеупорных конструкций, деталей для двигателей авиационной и космической техники. Особое место занимают тугоплавкие металлы при производстве деталей сложной конфигурации.

Этот металл открыли в далёком 1781 г. Его температура плавления равна 3380 °С. Поэтому он на сегодняшний день является самым тугоплавким металлом. Получают вольфрам из специального порошка, подвергая его химической обработке. Этот процесс основан на прессовании с последующим спеканием при высоких температурах. Далее его подвергают ковке и волочению на станках. Это связано с его наибольшей тугоплавкостью.

Так получают волокнистую структуру (проволоку). Она достаточно прочная и практически не ломается. На конечном этапе его раскатывают в виде тонких нитей или гибкой ленты. Для проведения механической обработки необходимо создать защитную среду из инертного газа. В этой среде температура должна превышать 400 °С. При температуре окружающей среды он приобретает свойства парамагнетика.

Ему присущи следующие недостатки:

  • сложность в создании условий для механической обработки;
  • быстрое образование на поверхности оксидных плёнок. Если в контакте имеются серосодержащие вещества, образуются сульфидные плёнки;
  • создание хорошего электрического контакта между несколькими деталями возможно только при создании большого давление.

Вольфрам

Для улучшения свойств вольфрама (тугоплавкости, устойчивости к коррозии, износостойкости) в него добавляют легирующие металлы. Например, рений и торий.

Металл используется для производства нитей накаливания для  осветительных и сушильных ламп. Его добавляют в сварочные электроды, элементы электронных ламп и рентгеновских трубок. Также применяется при производстве элементов ракет, в реактивных двигателях, артиллерийских снарядах.

По внешнему виду и характеристикам очень похож на вольфрам. Главным отличием является то, что его удельный вес почти в два раза меньше. Его получают аналогичным образом. Он широко применяется в радиоэлектронной промышленности, для изготовления различных испарителей в вакуумной технике, разрывных электрических контактов. Как и вольфрам, он является парамагнетиком. Для изготовления электродов стекловаренных (стеклоплавильных) печей он просто незаменим.

Ниобий

Температура плавления ниобия составляет 2741 °С. По своим химическим, физическим и механическим свойствам очень напоминает тантал. Он достаточно пластичен. Обладает хорошей свариваемостью и высокой теплопроводностью даже без дополнительного нагрева. Как и все остальные металлы его получают из порошка. Конечные заготовки из ниобия – проволока, лента, труба.

Ниобий

Сам металл и его сплавы демонстрируют эффект сверхпроводимости. Его широко применяют для изготовления анодов, экранных и антидинатронных сеток в электровакуумных приборах. Благодаря хорошей пористости, его успешно применяют в качестве газопоглотителей. В микроэлектронике он идёт на изготовление резисторов в микросхемах.

Ниобий хорошо себя проявил в качестве легирующей добавки. Используется при создании различных жаростойких конструкций, агрегатов работающих в агрессивных и радиоактивных средах. Из сплава стали и ниобия изготавливают некоторые элементы реактивных двигателей. Благодаря его свойству не взаимодействовать с радиоактивными веществами при высоких температурах, например, с ураном, применяется при изготовлении оболочек для урановых элементов, отводящих тепло в реакторах.

Тантал

Внешне имеет светло-серый цвет с небольшим голубоватым оттенком. Температура плавления близка к 3000 °С. Хорошо поддается основным видам обработки. Его можно ковать, прокатывать, производить волочение для изготовления проволоки.

Эти операции не требуют значительного нагрева. Для удобства дальнейшего использования тантал изготавливают в форме фольги и тонких листов.

Повышение температуры вызывает активное взаимодействие со всеми газами, кроме инертных – с ними никаких реакций не наблюдается.

Тантал

Из тантала производят внутренние элементы генераторных ламп (магнетронов и клистронов). Он активно используется при производстве пластин в электролитических конденсаторах. Очень удобен для изготовления пленочных резисторов. Активно применяется для изготовления так называемых лодочек в испарителях, в которых осуществляется термическое напыление различных материалов на тонкие пленки.

Ввиду ряда своих уникальных качеств, считается незаменимым в ядерной, аэрокосмической и радиоэлектронной промышленности.

Рений

Был открыт позже всех из перечисленных ранее металлов. Он полностью оправдывает свое название «редкоземельный металл», потому что находится в небольших количествах в составе руды других металлов, таких как платина или медь.

В основном его используют как легирующую добавку. Полученные сплавы приобретают хорошие характеристики прочности и ковкости. Это один из самых дорогих металлов, поэтому его применение приводит к резкому увеличению цены всего оборудования.

Те не менее, его применяют в качестве катализатора.

Хром

Хром — уникальный металл. Широко применяется в промышленности благодаря своим замечательным свойствам: прочности, устойчивости к внешним воздействиям (нагреву и коррозии), пластичности. Достаточно твердый, но хрупкий металл. Имеет серо-стальной цвет. Весь необходимый хром извлекают из руды двух видов хромита железа или окиси хрома.

Основными его свойствами являются:

  • Даже при нормальной температуре обладает почти идеальным антиферромагнитным упорядочением. Это придаёт ему отличные магнитные свойства.
  • По-разному реагирует на воздействие водорода и азота. В первом случае сохраняет свою прочность. Во втором, становится хрупким и полностью теряет все свои пластические свойства.
  • Обладает высокой устойчивостью против коррозии. Это происходит благодаря тому, что при взаимодействии с кислородом на поверхности образуется тонкая защитная плёнка. Она служит для защиты от дальнейшей коррозии.

Кристаллы хрома

Он используется в металлургической, химической, строительной индустриях. Хром, как легирующая добавка, обязательно используется для производства различных марок нержавеющей стали. Особое место занимает при изготовлении такого материала как нихром.

Этот материал способен выдерживать очень высокие температуры. Поэтому его используют в различных нагревательных элементах. Хромом активно покрывают поверхности различных деталей (металла, дерева, кожи). Это процесс осуществляется с помощью гальваники.

Токсичность некоторых солей хрома используют для сохранения древесины от повреждения, вредного воздействия грибков и плесени. Они также хорошо отпугивают муравьёв, термитов, насекомых разрушителей деревянных конструкций. Солями хрома обрабатывают кожу. Хром применяется при изготовлении различных красителей.

Благодаря высокой теплостойкости его используют как огнеупорный материал для доменных печей. Каталитические свойства соединений хрома успешно используют при переработке углеводородов. Его добавляют при производстве магнитных лент наивысшего качества. Именно он обеспечивает низкий коэффициент шума и широкую полосу пропускания.

Источник: https://stankiexpert.ru/spravochnik/materialovedenie/tugoplavkie-metally.html

ЭТО ИНТЕРЕСНО:  Что такое проба серебра
Понравилась статья? Поделиться с друзьями:
Металлы и их обработка
-- Сайдб лев (липк) -->
Сколько весит лист железа 4 мм

Закрыть
Для любых предложений по сайту: [email protected]