Какие свойства имеет металл

Изменение металлических и неметаллических свойств в таблице Менделеева

Какие свойства имеет металл

Периодическая таблица Дмитрия Ивановича Менделеева очень удобна и универсальна в своём использовании. По ней можно определить некоторые характеристики элементов, и что самое удивительное, предсказать некоторые свойства ещё неоткрытых, не обнаруженных учёными, химических элементов (например, мы знаем некоторые свойства предполагаемого унбигексия, хотя его ещё не открыли и не синтезировали).

Что такое металлические и неметаллические свойства

Эти свойства зависят от способности элемента отдавать или притягивать к себе электроны. Важно запомнить одно правило, металлы – отдают электроны, а неметаллы – принимают. Соответственно металлические свойства – это способность определённого химического элемента отдавать свои электроны (с внешнего электронного облака) другому химическому элементу. Для неметаллов всё в точности наоборот. Чем легче неметалл принимает электроны, тем выше его неметаллические свойства.

Металлы никогда не примут электроны другого химического элемента. Такое характерно для следующих элементов;

  • натрия;
  • калия;
  • лития;
  • франция и так далее.

С неметаллами дела обстоят похожим образом. Фтор больше всех остальных неметаллов проявляет свои свойства, он может только притянуть к себе частицы другого элемента, но ни при каких условиях не отдаст свои. Он обладает наибольшими неметаллическими свойствами. Кислород (по своим характеристикам) идёт сразу же после фтора. Кислород может образовывать соединение с фтором, отдавая свои электроны, но у других элементов он забирает отрицательные частицы.

Список неметаллов с наиболее выраженными характеристиками:

  1. фтор;
  2. кислород;
  3. азот;
  4. хлор;
  5. бром.

Неметаллические и металлические свойства объясняются тем, что все химические вещества стремятся завершить свой энергетический уровень. Для этого на последнем электронном уровне должно быть 8 электронов. У атома фтора на последней электронной оболочке 7 электронов, стремясь завершить ее, он притягивает ещё один электрон. У атома натрия на внешней оболочке один электрон, чтобы получить 8, ему проще отдать 1, и на последнем уровне окажется 8 отрицательно заряженных частиц.

Благородные газы не взаимодействуют с другими веществами именно из-за того, что у них завершён энергетический уровень, им не нужно ни притягивать, ни отдавать электроны.

Как изменяются металлические свойства в периодической системе

Периодическая таблица Менделеева состоит из групп и периодов. Периоды располагаются по горизонтали таким образом, что первый период включает в себя: литий, бериллий, бор, углерод, азот, кислород и так далее. Химические элементы располагаются строго по увеличению порядкового номера.

Группы располагаются по вертикали таким образом, что первая группа включает в себя: литий, натрий, калий, медь, рубидий, серебро и так далее. Номер группы указывает на количество отрицательных частиц на внешнем уровне определённого химического элемента. В то время, как номер периода указывает на количество электронных облаков.

Металлические свойства усиливаются в ряду справа налево или, по-другому, ослабевают в периоде. То есть магний обладает большими металлическими свойствами, чем алюминий, но меньшими, нежели натрий. Это происходит потому, что в периоде количество электронов на внешней оболочке увеличивается, следовательно, химическому элементу сложнее отдавать свои электроны.

В группе все наоборот, металлические свойства усиливаются в ряду сверху вниз. Например, калий проявляется сильнее, чем медь, но слабее, нежели натрий. Объяснение этому очень простое, в группе увеличивается количество электронных оболочек, а чем дальше электрон находится от ядра, тем проще элементу его отдать. Сила притяжения между ядром атома и электроном в первой оболочке больше, чем между ядром и электроном в 4 оболочке.

Сравним два элемента – кальций и барий. Барий в периодической системе стоит ниже, чем кальций. А это значит, что электроны с внешней оболочки кальция расположены ближе к ядру, следовательно, они лучше притягиваются, чем у бария.

Сложнее сравнивать элементы, которые находятся в разных группах и периодах. Возьмём, к примеру, кальций и рубидий. Рубидий будет лучше отдавать отрицательные частицы, чем кальций. Так как он стоит ниже и левее.

Но пользуясь только таблицей Менделеева нельзя однозначно ответить на этот вопрос сравнивая магний и скандий (так как один элемент ниже и правее, а другой выше и левее).

Для сравнения этих элементов понадобятся специальные таблицы (например, электрохимический ряд напряжений металлов).

Как изменяются неметаллические свойства в периодической системе

Неметаллические свойства в периодической системе Менделеева изменяются с точностью до наоборот, нежели металлические. По сути, эти два признака являются антагонистами.

Неметаллические свойства усиливаются в периоде (в ряду справа налево). Например, сера способна меньше притягивать к себе электроны, чем хлор, но больше, нежели фосфор. Объяснение этому явлению такое же. Количество отрицательно заряженных частиц на внешнем слое увеличивается, и поэтому элементу легче закончить свой энергетический уровень.

Неметаллические свойства уменьшаются в ряду сверху вниз (в группе). Например, фосфор способен отдавать отрицательно заряженные частицы больше, чем азот, но при этом способен лучше притягивать, нежели мышьяк. Частицы фосфора притягиваются к ядру лучше, чем частицы мышьяка, что даёт ему преимущество окислителя в реакциях на понижение и повышение степени окисления (окислительно-восстановительные реакции).

Сравним, к примеру, серу и мышьяк. Сера находится выше и правее, а это значит, что ей легче завершить свой энергетический уровень. Как и металлы, неметаллы сложно сравнивать, если они находятся в разных группах и периодах.

Например, хлор и кислород. Один из этих элементов выше и левее, а другой ниже и правее.

Для ответа придётся обратиться к таблице электроотрицательности неметаллов, из которой мы видим, что кислород легче притягивает к себе отрицательные частицы, нежели хлор.

Периодическая таблица Менделеева помогает узнать не только количество протонов в атоме, атомную массу и порядковый номер, но и помогает определить свойства элементов.

поможет вам разобраться в закономерности свойств химических элементов и их соединений по периодам и группам.

Источник: https://LivePosts.ru/articles/education-articles/himiya/usilenie-metallicheskih-i-nemetallicheskih-svojstv-v-tablitse

Чем металлы отличаются от неметаллов — особенности, свойства и характеристики :

Какие свойства имеет металл

В повседневной жизни человек взаимодействует с множеством веществ. Все элементы можно классифицировать по физическим и химическим качествам. В статье рассмотрим, чем отличаются металлы от неметаллов, их свойства и понятие.

Определение металла и его свойства

Каждый день мы имеем дело с металлами и это неспроста. Большинство элементов таблицы Менделеева являются ими. Все они имеют свои характеристики и свойства.

Как правило, металлы — это такие элементы, которые хорошо проводят тепло и электричество. Также металлы очень пластичны, что позволяет изменять их форму путем ковки, еще они имеют высокий коэффициент твердости. Отличительной особенностью этого элемента является блеск, который называется металлическим. Свойства металла делятся на две основные фракции, такие как:

  • Физические свойства.
  • Химические свойства.

Чем металлы отличаются от металлов по физическим характеристикам? К физическим свойствам относится:

  • Цвет. Металлы, как правило, имеют плотную структуру, которая не пропускает сквозь себя свет. А их цвет определяется отражением света от его поверхности. Так, металлы в большинстве случаев имеют расцветку от серого до серебристого. Но есть и исключения, как, например, медь, которая имеет красный цвет, и золото, имеющее желтый окрас.
  • Состояние формы, твердость и плотность. Сами по себе металлы имеют твердое агрегатное состояние, но способны переходить в жидкое при высоких температурах. Так, металлы плавятся при температуре от 40 до 3400 градусов по Цельсию. Но встречаются металлы, чье основное агрегатное состояние — жидкое. К таким элементам относят ртуть.
  • Электропроводимость. Особенностью является ее снижение при повышении температуры вещества.
  • Теплопроводность и температура кипения/плавления.

Чем металлы отличаются от металлов по химическим свойствам? В этой группе выделяют:

  • Окисляемость. Также металлы окисляются, и оксидная пленка на поверхности может придать им другой оттенок.
  • Вступление в реакцию с неметаллами, кислотами, водой, солями.

Чем металлы отличаются друг от друга

Многие не знают, чем металлы отличаются от металлов. Их различия можно классифицировать:

  • Металлы между собой отличаются по цвету, как, например, золото и медь.
  • Также металлы плавятся при разных температурах. Некоторые металлы, например, олово и свинец, можно расплавить в домашних условиях, а вот для остальных нужна более высокая температура.
  • Между собой металлы делятся на две группы: тяжелые и легкие. К тяжелым металлам относятся те, чья плотность составляет от 5 г/см3, легкие металлы имеют плотность меньше 5 г/см3. К легким металлам относится литий, который имеет плотность 0.2 г/см3, место самого тяжелого металла делят между собой осмий и иридий. Их плотность составляет 22.6 г/см3.
  • Металлы отличаются друг от друга пластичностью и электропроводность. Некоторые из них очень пластичны. К примеру, из всего лишь 1 грамма золота можно сделать тонкую проволоку в 3.5 километра. Она будет гибкой и не сломается. Повторить такое с менее пластичным металлом не получится.
  • Также часть металлов проводит ток лучше, чем другие. Самыми электропроводными металлами признаны медь, серебро и алюминий. Их наиболее часто применяют в качестве проводящих элементов.

Чем неметаллы отличаются от металлов

Неметаллами принято называть элементы, которые имеют неметаллические свойства. Чем отличаются металлы от неметаллов? Рассмотрим подробнее:

  • Форма. Так неметаллы имеют три агрегатных состояния: жидкое, твердое и газообразное.
  • Электропроводимость. Неметаллы не проводят ток как металлы, имеют более низкую теплопроводность.
  • Зрительные отличия. Металл легко отличить визуально от неметалла, так как первый имеет металлический блеск. К неметаллам относятся такие элементы как бром, сера и водород.
  • Химическое строение. Также легко отличить их и по строению. Металлы имеют четкую кристаллическую решетку. У неметаллов строение ионное.
  • Вступление в реакции. Неметаллы имеют большее число незанятых электронов, находящихся на внешних уровнях. Именно это позволяет им иметь высокую окислительную способность по сравнению с металлами.

Чем дерево похоже на металл и в чем их отличия

Дерево — это растительное сырье. Металл же это результат природного химического соединения. Чем отличается дерево от металла:

  • Древесина не проводит электричество и возгорается при довольно низкой температуре по сравнению с металлами.
  • Древесина не плавится при воздействии высоких температур.
  • Также дерево плохо проводит тепло, в отличие от металлов.
  • Древесина упругая, но не гибкая. Металлы же имеют более низкий коэффициент упругости, но они более пластичны. Так сложить пополам проволоку и не сломать ее можно легко, древесина при таком воздействии сломается пополам.
  • Также отличительной чертой древесины от металла является то, что она не покрывается коррозией. Есть породы дерева, которые могут долгое время находиться в воде и не гнить. Металлы же при таких условиях покрываются ржавчиной.
  • Плотность древесины достаточно низкая по сравнению с металлами. Хотя некоторые металлы имеют плотность ниже дерева, они относятся к легким металлам.

Чем отличаются полупроводники от металлов

Полупроводниками называются неметаллы, которые имеют некоторые металлические свойства. Металлы и полупроводники имеют схожесть в том, что и те, и другие способны проводить ток.

Но полупроводники имеют отличительную особенность, которая заключается в том, что их электропроводность может возрастать в несколько раз в зависимости от внешних факторов. Таким образом, полупроводник проводит ток лучше при повышении температуры. У металлов электропроводность с повышением температуры уменьшается. Также на электропроводность может повлиять наличие посторонних примесей. Так, в металлах примеси понижают электропроводность, а в полупроводниках повышают.

Полупроводники в отличие от металлов могут обладать позитивной и негативной электропроводимостью. Сами по себе полупроводники по способности пропускать сквозь себя ток стоят между металлом и элементами, которые не проводят ток совсем.

Отличие металла от стали

Ошибочно считать, что металл и сталь — это совершенно разные элементы. На самом деле сталь — это тоже металл. Чем отличается металл от стали?

Дело в том, что металлами называют целую группу элементов, которые имеют металлические свойства. В эту группу входит и железо. Сталь не что иное, как сплав железа с элементами, входящими в группу металлов.

Чаще всего в состав стали помимо железа входят такие элементы таблицы Менделеева как молибден, хром и ванадий. Также в состав стали входит и углерод. С помощью него повышают прочность железа.

Таким образом, варьируя количеством углерода в сплаве можно получить очень прочный материал. Но чем прочнее сталь, тем больше она становится хрупкой. Так, при длительной динамической нагрузке сталь легко ломается. Добавление других примесей к ней помогает добиться устойчивости к каким-либо воздействиям.

Итак, в статье было рассмотрено, чем металлы отличаются от металлов и неметаллов. Характеристики всех элементов можно сравнивать по химическим и физическим свойствам. Ежедневно человек пользуется такими элементами и создает новые вещества для улучшения качества жизни.

Источник: https://www.syl.ru/article/372332/chem-metallyi-otlichayutsya-ot-nemetallov---osobennosti-svoystva-i-harakteristiki

Свойства металлов

Какие свойства имеет металл

Металлы, это группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск. В данной статье все свойства металлов будут представлены в виде отдельных таблиц.

Свойства металлов делятся на физические, химические, механические и технологические.

Физические свойства металлов

К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании.

Удельный вес металла — это отношение веса однородного тела из металла к объему металла, т.е. это плотность в кг/м3 или г/см3.

Плавкость металла — это способность металла расплавляться при определенной температуре, называемой температурой плавления.

Электропроводность металлов — это способность металлов проводить электрический ток, это свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля.

 Под электропроводностью подразумевается способность проводить прежде всего постоянный ток (под воздействием постоянного поля), в отличие от способности диэлектриков откликаться на переменное электрическое поле колебаниями связанных зарядов (переменной поляризацией), создающими переменный ток.

Магнитные свойства металлов характеризуются: остаточной индукцией, коэрцетивной силой и магнитной проницаемостью.

Теплопроводность металлов — это их способность передавать тепло от более нагретых частиц к менее нагретым. Теплопроводность металла определяется количеством теплоты, которое проходит по металлическому стержню сечением в 1см2, длиной 1см в течение 1сек. при разности температур в 1°С.

ЭТО ИНТЕРЕСНО:  Какая степень окисления железа

Теплоемкость металлов — это количество теплоты, поглощаемой телом при нагревании на 1 градус. Отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому изменению единицы массы вещества (г, кг) называется удельной теплоёмкостью, 1 моля вещества — мольной (молярной).

Расширяемость металлов при нагревании.Все металлы при нагревании расширяются, а при охлаждении сжимаются. Степень увеличения или уменьшения первоначального размера металла при изменении температуры на один градус характеризуется коэффициентом линейного расширения.

Химические свойства металлов

К химическим — окисляемость, растворимость и коррозионная стойкость.

Окисление металлов — это реакция соединения металла с кислородом, сопровождающаяся образованием окислов (оксидов). Если рассмотреть окисляемость шире, то это реакции, в которых атомы теряют электроны и образуются различные соединения, например, хлориды, сульфиды. В природе металлы находятся в основном в окисленном состоянии, в виде руд, поэтому их производство основано на процессах восстановления различных соединений.Растворимость металлов — это их способность образовывать с другими веществами однородные системы — растворы, в которых металл находится в виде отдельных атомов, ионов, молекул или частиц. Металлы растворяются в растворителях, в качестве которых выступают сильные кислоты и едкие щелочи. В промышленности наиболее часто используются: серная, азотная и соляные кислоты, смесь азотной и соляной кислот (царская водка), а также щелочи — едкий натр и едкий калий.Коррозионная стойкость металлов — это их способность сопротивляться коррозии.

Механические свойства металлов

К механическим — прочность, твердость, упругость, вязкость, пластичность.

Прочностью металла называется его способность сопротивляться действию внешних сил, не разрушаясь.

Твердостью металлов называется способность тела противостоять проникновению в него другого, более твердого тела.

Упругость металлов — свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших изменение формы (деформацию).

Вязкость металлов — это способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость — свойство обратное хрупкости.

Пластичность металлов — это свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность—свойство обратное упругости.

Технологические свойства металлов

К технологическим — прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.

Прокаливаемость металлов – это их способность получать закаленный слой определенной глубины.

Жидкотекучесть металлов — это свойство металла в жидком состоянии заполнять литейную форму и воспроизводить ее очертания в отливке.

Ковкость металлов —это технологическое свойство, характеризующее их способность к обработке деформированием, например, ковкой, вальцеванием, штамповкой без разрушения.

Свариваемость металлов — это их свойство образовывать в процессе сварки неразъемное соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией производимого изделия.

Обрабатываемость металлов резанием — это их способность изменять геометрическую форму, размеры, качество поверхности за счет механического срезания материала заготовки режущим инструментом. Обрабатываемость металлов зависит от их механических свойств, в первую очередь прочности и твердости.

Современными методами испытания металлов являются механические испытания, химический анализ, спектральный анализ, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах, а также определить качество готовых изделий.

Таблица «Свойства металлов: Чугун, Литая сталь, Сталь»

  1. Предел прочности на растяжение
  2. Предел текучести (или Rp 0,2);
  3. Относительное удлинение образца при разрыве;
  4. Предел прочности на изгиб;
  5. Предел прочности на изгиб приведен для образца из литой стали;
  6. Предел усталости всех типов чугуна, зависит массы и сечения образца;
  7. Модуль упругости;
  8. Для серого чугуна модуль упругости уменьшается с увеличением напряжения растяжения и остается практически постоянным с увеличением напряжения сжатия.

Таблица «Свойства пружинной стали»

  1. Предел прочности на растяжение,
  2. Относительное уменьшение поперечного сечения образца при разрыве,
  3. Предел прочности на изгиб;
  4. Предел прочности при знакопеременном циклическом нагружении при N ⩾ 107,
  5. Максимальное напряжение при температуре 30°С и относительном удлинении 1 2% в течение 10 ч; для более высоких температур см. раздел «Способы соединения деталей»,
  6. см. раздел «Способы соединения деталей»;
  7. 480 Н/мм2 для нагартованных пружин;
  8. Приблизительно на 40% больше для нагартованных пружин

Таблица «Свойства цветных металлов»

  1. Модуль упругости, справочные данные;
  2. Предел прочности на растяжение;
  3. Предел текучести, соответствующий пластической деформации 0,2%;
  4. Предел прочности на изгиб;
  5. Наибольшая величина;
  6. Для отдельных образцов

Таблица «Свойства легких сплавов»

  1. Предел прочности на растяжение;
  2. Предел текучести, соответствующий пластической деформации 0,2%;
  3. Предел прочности на изгиб;
  4. Наибольшая величина;
  5. Показатели прочности приведены для образцов и для отливок;
  6. Показатели предела прочности на изгиб приведены для случая плоского нагружения

Таблица «Металлокерамические материалы (PM)1) для подшипников скольжения»

  1. В соответствии со стандартом DIN 30 910,1990 г. издания;
  2. Применительно к подшипнику 10/16 г 10;
  3. Углерод содержится, главным образом, в виде свободного графита;
  4. Углерод содержится только в виде свободного графита

Таблица «Свойства металлокерамических материалов (РМ)1 для конструкционных деталей»

  1. В соответствии со стандартом DIN 30 910,1990 г. издания;

Таблица «Свойства магнитомягких материалов»

  1. Данные относятся только к магнитным кольцам.

Таблица «Свойства магнитомягких ферритов»

  1. Нормируемые величины;
  2. Потеря материалом магнитных свойств в зависимости от частоты при низкой плотности магнитного потока (В < 0,1 мТл);
  3. Потери магнитных свойств при высокой плотности магнитного потока; замеряются предпочтительно при f = 25 кГц, В = 200 мТл, Θ = 100°С;
  4. Магнитная проницаемость при строго синусоидальном магнитном поле; замеряется при f

Источник: http://press.ocenin.ru/svojstva-metallov/

Свойства металлов: химические, физические, технологические

  • Химические свойства металлов
  • Физические свойства металлов
  • Механические свойства металлов
  • Технологические свойства металлов
  • Интересные факты о металлах
  • Металлы, видео
  • Не секрет, что все вещества в природе делятся на три состояния: твердые, жидкие и газообразные. А твердые вещества в свою очередь делятся на металлы и неметаллы, разделение это нашло свое отображение и в таблице химических элементов великого химика Д. И. Менделеева. Наша сегодняшняя статья о металлах, занимающих важное место, как в химии, так и во многих других сферах нашей жизни.

    Химические свойства металлов

    Все мы, так или иначе, но сталкиваемся с химией в нашей повседневной жизни. Например, во время приготовления еды, растворение поваренной соли в воде является простейшей химической реакцией. Вступают в разнообразные химические реакции и металлы, а их способность реагировать с другими веществами это и есть их химические свойства.

    Среди основных химических свойств или качеств металлов можно выделить их окисляемость и коррозийную стойкость. Реагируя с кислородом, металлы образуют пленку, то есть проявляют окисляемость.

    Аналогичным образом происходит и коррозия металлов – их медленное разрушение по причине химического или электрохимического взаимодействия. Способность металлов противостоять коррозии называется их коррозийной стойкостью.

    Физические свойства металлов

    Среди основных общих физических свойств металлов можно выделить:

    • Плавление.
    • Плотность.
    • Теплопроводность.
    • Тепловое расширение.
    • Электропроводность.

    Важным физическим параметром металла является его плотность или удельный вес. Что это такое? Плотность металла – это количество вещества, которое содержится в единице объема материала. Чем меньше плотность, тем металл более легкий. Легкими металлами являются: алюминий, магний, титан, олово. К тяжелым относятся такие металлы как хром, марганец, железо, кобальт, олово, вольфрам и т. д. (в целом их имеется более 40 видов).

    Способность металла переходить из твердого состояния в жидкое, именуется плавлением. Разные металлы имеют разные температуры плавления.

    Скорость, с которой в металле проводится тепло при нагревании, называется теплопроводностью металла. И по сравнению с другими материалами все металлы отличаются высокой теплопроводностью, говоря по-простому, они быстро нагреваются.

    Помимо теплопроводности все металлы проводят электрический ток, правда, некоторые делают это лучше, а некоторые хуже (это зависит от строения кристаллической решетки того или иного металла). Способность металла проводить электрический ток называется электропроводностью. Металлы, обладающие отличной электропроводностью, это золото, алюминий и железо, именно поэтому их часто используют в электротехнической промышленности и приборостроении.

    Механические свойства металлов

    Основными механическими свойствами металлов является их твердость, упругость, прочность, вязкость и пластичность.

    При соприкосновении двух металлов могут образоваться микро вмятины, но более твердый металл способен сильнее противостоять ударам. Такая сопротивляемость поверхности металла ударам извне и есть его твердость.

    Чем же твердость металла отличается от его прочности. Прочность, это способность металла противостоять разрушению под действием каких-либо других внешних сил.

    Под упругостью металла понимается его способность возвращать первоначальную форму и размер, после того как нагрузка, вызвавшая деформацию металла устранена.

    Способность металла менять форму под внешним воздействием называется пластичностью.

    Технологические свойства металлов

    Технологические свойства металлов и сплавов важны в первую очередь при их производстве, так как от них зависит способность подвергаться различным видам обработки с целью создания разнообразных изделий.

    Среди основных технологических свойств можно выделить:

    • Ковкость.
    • Текучесть.
    • Свариваемость.
    • Прокаливаемость.
    • Обработку резанием.

    Под ковкостью понимается способность металла менять форму в нагретом и холодном состояниях. Ковкость метала, была открыта еще в глубокой древности, так кузнецы, занимающиеся обработкой металлических изделий, превращением их в мечи или орала (в зависимости от потребности) на протяжении многих веков и исторических эпох были одной из самых уважаемых и востребованных профессий.

    Способность двух металлических сплавов при нагревании соединяться друг с другом называют свариваемостью.

    Текучесть металла тоже очень важна, она определяет способность расплавленного метала растекаться по заготовленной форме.

    Свойство металла закаливаться называется прокаливаемостью.

    Интересные факты о металлах

    • Самым твердым металлом на Земле является хром. Этот голубовато-белый метал был открыт в 1766 году под Екатеринбургом.
    • И наоборот, самыми мягкими металлами являются алюминий, серебро и медь. Благодаря своей мягкости они нашли широкое применение в разных областях, например, в электроаппаратостроении.
    • Золото – которое на протяжении веков было самим драгоценным металлом имеет и еще одно любопытное свойство – это самый пластичный металл на Земле, обладающий к тому же отличной тягучестью и ковкостью. Также золото не окисляется при нормальной температуре (для этого его нужно нагреть до 100С), обладает высокой теплопроводностью и влагоустойчивостью. Наверняка все эти физические характеристики делают настоящее золото таким ценным.
    • Ртуть – уникальный металл, прежде всего тем, что он единственный из металлов, имеющий жидкую форму. Причем в природных условиях ртути в твердом виде не существует, так как ее температура плавления -38С, то есть в твердом состоянии она может существовать в местах, где просто таки очень холодно. А при комнатной температуре 18С ртуть начинает испаряться.
    • Вольфрам интересен тем, что это самый тугоплавкий металл в мире, чтобы он начал плавиться нужна температура 3420С. Именно по этой причине в электрических лампочках нити накаливания, принимающие основной тепловой удар, изготовлены из вольфрама.

    Металлы, видео

    И в завершение образовательное видео по теме нашей статьи.

    Источник: https://www.poznavayka.org/fizika/svoystva-metallov/

    Физические и химические свойства металлов – Осварке.Нет

    В статье подробно рассматриваются физические и химические свойства металлов.

    Физические свойства

    К физическим свойствам металлов относят цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, теплоемкость, электропроводность, магнитные свойства и др.

    Цветом называют способность металлов отражать световое излучение с определенной длиной волны. Например, медь имеет розово-красный цвет, алюминий – серебристо-белый.

    Плотность металла характеризуется его массой, заключенной в единице объема. По плотности все металлы делят на легкие (менее 4500 кг/м3) и тяжелые. Плотность имеет большое значение при создании различных изделий. Например, в самолето- и ракетостроении стремятся использовать более легкие металлы и сплавы (алюминиевые, магниевые, титановые), что способствует снижению массы изделий.

    Температура плавления

    Температурой плавления называют температуру, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие металлы (вольфрам 3416°С, тантал 2950°С, титан 1725°С, и др.

    ) и легкоплавкие (олово 232°С, свинец 327°С, цинк 419,5°С, алюминий 660°С). Температура плавления имеет большое значение при выборе металлов для изготовления литых изделий, сварных и паяных соединений, термоэлектрических приборов и других изделий.

    В единицах СИ температуру плавления выражают в градусах Кельвина (К).

    Теплопроводность

    Теплопроводностью называют способность металлов передавать тепло от более нагретых к менее нагретым участкам тела. Серебро, медь, алюминии обладают большой теплопроводностью. Железо имеет теплопроводность примерно в три раза меньше, чем алюминий, и в пять раз меньше, чем медь.

    Теплопроводность имеет большое значение при выборе материала для деталей. Например, если металл плохо проводит тепло, то при нагреве и быстром охлаждении (термическая обработка, сварка) в нем образуются трещины. Некоторые детали машин (поршни двигателей, лопатки турбин) должны быть изготовлены из материалов с хорошей теплопроводностью.

    В единицах СИ теплопроводность имеет размерность Вт/(м∙К).

    Тепловое расширение

    Тепловым расширением называют способность металлов увеличиваться в размерах при нагревании и уменьшаться при охлаждении. Тепловое расширение характеризуется коэффициентом линейного расширения α=(l2-l1)/[l1(t2-t1)], где l1 и l2 длины тела при температурах t1 и t2.

    Коэффициент объемного расширения равен 3α.

    Тепловые расширения должны учитываться при сварке, ковке и горячей объемной штамповке, изготовлении литейных форм, штампов, прокатных валков, калибров, выполнении точных соединений и сборке приборов, при строительстве мостовых ферм, укладке железнодорожных рельс.

    Теплоемкость

    Теплоемкостью называют способность металла при нагревании поглощать определенное количество тепла. В единицах СИ имеет размерность Дж/К. Теплоемкость различных металлов сравнивают по величине удельной теплоемкости – количеству тепла, выраженному в больших калориях, которое требуется для повышения температуры 1 кг металла на 1°С (в единицах СИ – Дж/(кг∙К).

    Способность проводить электрический ток

    Способность металлов проводить электрический ток оценивают двумя взаимно противоположными характеристиками – электропроводностью и электросопротивлением.

    Электрическая проводимость оценивается в системе СИ в сименсах (См), а удельная электропроводность – в Cм/м, аналогично электросопротивление выражают в омах (Ом), а удельное электросопротивление — в Ом/м. Хорошая электропроводность необходима, например, для токонесущих проводов (медь, алюминий).

    При изготовлении электронагревателей приборов и печей необходимы сплавы с высоким электросопротивлением (нихром, константан, манганин). С повышением температуры металла его электропроводность уменьшается, а с понижением – увеличивается.

    Магнитные свойства

    Магнитные свойства характеризуются абсолютной магнитной проницаемостью или магнитной постоянной, т. е. способностью металлов намагничиваться. В единицах СИ магнитная постоянная имеет размерность Гн/м. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, называемые ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.

    ЭТО ИНТЕРЕСНО:  Что такое медицинское золото

    Химические свойства

    Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.

    Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.

    Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.

    Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.

    Сохранить:

    Источник: http://osvarke.net/materialovedenie/fizicheskie-i-himicheskie-svojstva-metallov/

    Общая характеристика металлов

       Если в периодической таблице элементов Д.И.Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп, выделены синим цветом), а справа вверху – элементы-неметаллы (выделены желтым цветом). Элементы, расположенные вблизи диагонали – полуметаллы или металлоиды (B, Si, Ge, Sb и др.), обладают двойственным характером (выделены розовым цветом).

     Как видно из рисунка, подавляющее большинство элементов являются металлами.

    По своей химической природе металлы – это химические элементы, атомы которых отдают электроны с внешнего или предвнешнего энергетического уровней, образуя при этом положительно заряженные ионы.

    Практически все металлы имеют сравнительно большие радиусы и малое число электронов (от 1 до 3) на внешнем энергетическом уровне. Для металлов характерны низкие значения электроотрицательности и восстановительные свойства.

    Наиболее типичные металлы расположены в начале периодов (начиная со второго), далее слева направо металлические свойства ослабевают. В группе сверху вниз металлические свойства усиливаются, т.к увеличивается радиус атомов (за счет увеличения числа энергетических уровней). Это приводит к уменьшению электроотрицательности (способности притягивать электроны) элементов и усилению восстановительных свойств (способность отдавать электроны другим атомам в химических реакциях).

    Типичными металлами являются s-элементы (элементы IА-группы от Li до Fr. элементы ПА-группы от Мg до Rа). Общая электронная формула их атомов ns1-2. Для них характерны степени окисления + I и +II соответственно.

    Небольшое число электронов (1-2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

    Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами — это ионные кристаллы «катион металлаанион неметалла», например К+ Вг—, Сa2+ О2-. Катионы типичных металлов входят также в состав соединений со сложными анионами — гидроксидов и солей, например Мg2+(OН—)2, (Li+)2СO32-.

    Металлы А-групп, образующие диагональ амфотерности в Периодической  системе   Ве-Аl-Gе-Sb-Ро, а также примыкающие к ним металлы (Gа, In, Тl, Sn, Рb, Вi) не проявляют типично  металлических свойств.

     Общая  электронная формула их  атомов ns2np0-4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры — соединения Тl III, РbIV, Вiv).

    Подобное химическое поведение характерно и для большинства (d-элементов, т. е. элементов Б-групп Периодической системы (типичные примеры — амфотерные элементы Сr и Zn).

    Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами).

    В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично).

    Например, металл галлий состоит из молекул Ga2, в твердом состоянии хлориды алюминия и ртути (II) АlСl3 и НgСl2 содержат сильно ковалентные связи, но в растворе АlСl3 диссоциирует почти полностью, а НgСl2 — в очень малой степени (да и то на ионы НgСl+ и Сl—).

    Общие физические свойства металлов

    Благодаря  наличию свободных электронов («электронного газа») в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

    1)     Пластичность — способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

    2)    Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

    3)     Электропроводность. Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов.  При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».

    4)     Теплопроводность.  Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.

    5)     Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

    6)     Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий — литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее  5 г/см3 считаются «легкими металлами».

    7)     Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

    Общие химические свойства металлов

    Сильные восстановители: Me0 – nē →  Men+

    Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

    I. Реакции металлов с неметаллами

    1)     С кислородом:
    2Mg + O2 →  2MgO

    2)     С серой:
    Hg + S →  HgS

    3)     С галогенами:
    Ni + Cl2  –t°→   NiCl2

    4)     С азотом:
    3Ca + N2  –t°→   Ca3N2

    5)     С фосфором:
    3Ca + 2P  –t°→   Ca3P2

    6)     С водородом (реагируют только щелочные и щелочноземельные металлы):
    2Li + H2 →  2LiH

    Ca + H2 →  CaH2

    II. Реакции металлов с кислотами

    1)     Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

    Mg + 2HCl →   MgCl2 + H2

    2Al+ 6HCl →  2AlCl3 + 3H2

    6Na + 2H3PO4 →  2Na3PO4 + 3H2­

    2) С кислотами-окислителями:

    При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

    Zn + 2H2SO4(К) → ZnSO4 + SO2 + 2H2O

    4Zn + 5H2SO4(К) → 4ZnSO4 + H2S + 4H2O

    3Zn + 4H2SO4(К) → 3ZnSO4 + S + 4H2O

    2H2SO4(к) + Сu → Сu SO4 + SO2 + 2H2O

    10HNO3 + 4Mg → 4Mg(NO3)2 + NH4NO3 + 3H2O

    4HNO3(к) + Сu → Сu (NO3)2 + 2NO2 + 2H2O

    III. Взаимодействие металлов с водой

    1)     Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

    2Na + 2H2O →  2NaOH + H2

    Ca+ 2H2O →  Ca(OH)2 + H2

    2)     Металлы средней активности окисляются водой при нагревании до оксида:

    Zn + H2O  –t°→   ZnO + H2­

    3)     Неактивные (Au, Ag, Pt) — не реагируют.

    IV.    Вытеснение более активными металлами менее активных металлов из растворов их солей:

    Cu + HgCl2 →  Hg+ CuCl2

    Fe+ CuSO4 →  Cu+ FeSO4

    В промышленности часто используют не чистые металлы, а их смеси — сплавы, в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь) являются уже достаточно твердыми и широко используются в машиностроении.

    Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем — дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении.

    Сплавы железа с углеродом (и добавками других металлов) — это широко известные чугун и сталь.

    Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой, в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

    Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

    Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией. Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте — металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

    При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа+, Са2+,А13+,Fе2+ и Fе3+)

    Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg — только серной (концентрированной) и азотной кислотами, а Рt и Аи — «царской водкой».

    Коррозия металлов

    Нежелательным химическим свойством металлов является их коррозия, т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

    Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО2 и SО2; создается кислотная среда, и катионы Н+ вытесняются активными металлами в виде водорода Н2 (водородная коррозия).

    Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

    Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

    Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь), имеют высокую коррозионную стойкость.

      Общие способы получения металлов в промышленности:

    электрометаллургия, т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

    пирометаллургия, т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

    гидрометаллургия, т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора СuSO4 действием цинка, железа или алюминия).

    В природе иногда встречаются самородные металлы (характерные примеры — Аg, Аu, Рt, Нg), но чаще металлы находятся в виде соединений (металлические руды). По распространенности в земной коре металлы различны: от наиболее распространенных — Аl, Nа, Са, Fе, Мg, К, Тi) до самых редких — Вi, In, Аg, Аu, Рt, Rе.

    Источник: http://himege.ru/obshhaya-xarakteristika-metallov/

    Физические и химические свойства металлов

    Металлы широко распространены в природе и могут встречаться в различном виде: в самородном состоянии (Ag, Au, Rt, Cu), в виде оксидов (Fe3O4, Fe2O3, (NaK)2O×AlO3), солей (KCl, BaSO4, Ca3(PO4)2), а также сопутствуют различным минералам (Cd – цинковые руды, Nb, Tl – оловянные и т.д.).

    Получение металлов

    Щелочные, щелочноземельные металлы и алюминий получают электролизом расплавов солей или оксидов этих элементов:

    2NaCl = 2Na + Cl2

    CaCl2 = Ca + Cl2

    2Al2O3 = 4Al + 3O2

    Тяжелые металлы получают восстановлением из руд при высоких температурах и в присутствии катализатора (пирометаллургия) (1) или восстановлением из солей в растворе (гидрометаллургия) (2):

    Cu2O + C = 2Cu + CO (1)

    CuSO4 + Fe = Cu + FeSO4 (2)

    Некоторые металлы получают термическим разложением их неустойчивых соединений:

    Ni(CO)4 = Ni + 4CO

    Примеры решения задач

    Источник: http://ru.solverbook.com/spravochnik/svojstva-po-ximii/fizicheskie-i-ximicheskie-svojstva-metallov/

    Неметаллы. Физические и химические свойства

    Как же определить, относится вещество к металлам или к неметаллам?

    Если внимательно посмотреть на Периодическую систему Д.И. Менделеева (подробно с классификацией элементов знакомимся в параграфе 42 учебника по химии для 8 класса под редакцией Еремина В.В.) и провести условную диагональ от водорода через бор до астата и неоткрытого пока элемента № 118, таблица неметаллов займет правый верхний угол.

    Каждый горизонтальный период таблицы заканчивается элементом с завершенным внешним энергетическим уровнем. Эта группа элементов носит название благородные газы и имеет особые свойства, с которыми можно познакомиться в параграфе 18 учебника «Химия» для 8 класса под редакцией Еремина В.В.

    При рассмотрении электронного строения неметаллов можно заметить, что энергетические уровни атома заполнены электронами больше чем на 50% (исключение – бор), и у элементов, расположенных в таблице справа налево количество электронов на внешнем уровне увеличивается. Поэтому в химических реакциях эта группа веществ может быть как акцептором электронов с окислительными свойствами, так и донором электронов с восстановительными свойствами.

    Вещества, образующие диагональ бор-кремний-германий-мышьяк-теллур, являются уникальными, и в зависимости от реакции и реагента могут проявлять как металлические, так и неметаллические свойства. Их называют металлоиды. В химических реакциях они проявляют преимущественно восстановительные свойства.

    Физические свойства неметаллов. Аллотропия

    Если смотреть на металлы, то невооруженным глазом можно заметить общие свойства — металлический блеск, твердое агрегатное состояние (исключение — жидкая ртуть), тепло- и электропроводность.

    С неметаллами все намного сложнее. Они могут иметь молекулярное и немолекулярное строение. Благодаря различиям в строении, простые вещества неметаллы существуют в трех агрегатных состояниях:

    1. Молекулярные:
      • Летучие, газообразные, бесцветные кислород, водород.
      • Газообразные, окрашенные хлор, азот, фтор.
      • Единственный жидкий представитель — темно-красный бром.
      • Твердые, но хрупкие вещества с невысокой температурой плавления — кристаллы йода, серы, белого фосфора.
    2. Немолекулярные:
      • Твердые вещества с высокой температурой плавления — кремний, графит, алмаз и красный фосфор.
    ЭТО ИНТЕРЕСНО:  Как расплавить латунь в домашних условиях

    Большинство из неметаллических веществ плохо проводят электричество и тепло.

    Исключением является графит — разновидность углерода.

    Аллотропия — уникальная способность неметаллического элемента образовывать несколько простых веществ. В естественной среде существуют аллотропные модификации элементов, которые отличаются физическими и химическими свойствами. К ним относятся озон и кислород, графит и алмаз. Подробнее о физических свойствах неметаллов вы можете узнать в учебнике «Химия. 9 класс».

    Химические свойства неметаллов

    Как мы разобрали выше, группа неметаллов довольно полиморфна и в зависимости от типа реакций, в которых они участвуют, могут проявлять и окислительные, и восстановительные свойства. Фтор — исключение в этом ряду. Он всегда окислитель.

    В ряду F,O,N,CL,Br,I,S,C,Se,P,As,Si,H окислительные свойства уменьшаются. Восстановительные свойства кислород может проявлять только в отношении фтора.

    В этом типе реакций проявляются окислительные свойства и неметаллы принимают электроны с образованием отрицательно заряженных частиц.

    Са + Сl2 = СаСl2

    Са + O2 = СаO2

    Na + Сl2 = Na+Сl2

    Практически все неметаллы реагируют с водородом. Лишь благородные газы составляют исключение для реакций данного типа. Продуктом реакции являются летучие водородные соединения:

    Cl2 + H2 = 2HCl

    С + 2Н2 = СН4

    Неметаллы образуют кислотные или несолеобразующие оксиды.
    S + O2 = SO2   

    P + 5O2 = 2P2O5

        4. Взаимодействие с водой и кислотами для неметаллов не характерно.

    Что ещё почитать?

    ОГЭ по химии — 2019: расписание, критерии оценивания, типы заданий
    Биография Д.И. Менделеева. Интересные факты из жизни великого химика Карбоновые кислоты
    Массовая доля вещества

    История открытия неметаллов

    Медная посуда, железные орудия труда, золотые украшения — издавна человек замечал, что у всех этих веществ есть определенные общие свойства:

    • они проводят тепло и электрический ток;
    • для них характерен металлический блеск;
    • благодаря пластичности и ковкости им можно придать любую форму;
    • для всех веществ характерна металлическая кристаллическая решетка.

    В противовес металлам были и другие вещества, не обладающие металлическими свойствами, и названные соответственно неметаллами. Практически до конца XVII века ученым-алхимикам было известно всего лишь два вещества-неметалла — углерод и сера.

    В 1669 году Бранд в поисках «философского камня» открыл белый фосфор. И за короткий период с 1748 по 1798 годы было открыто около 15 новых металлов и 5 неметаллов.

    Попытки открытия фтора стоили исследователям не только здоровья, но и жизни. Деви, братья Кнокс, Гей-Люссак — это неполный список жертв науки, что потеряли здоровье в попытках выделить фтор из плавикового шпата. Лишь в 1886 году Муассан решил сложную задачу способом электролиза. И получил первый галоген, а ещё – ядовитый хлор. Во времена Первой мировой войны его использовали как оружие массового поражения.

    В настоящее время открыто 22 неметаллических элемента.

    #ADVERTISING_INSERT#

    Источник: https://rosuchebnik.ru/material/nemetally/

    Сталь 

    Сталь относится к черным металлам. Для художественной обработки лучше всего подходит углеродистая сталь, которая представляет собой сплав железа с углеродом и другими элементами. Сталь обладает высокими качественными характеристиками, среди которых можно назвать следующие:

    • Упругость
    • Прочность
    • Способность к закаливанию — кусок стали нагревается при высокой температуре докрасна, а затем опускают в воду. Благодаря этому металл приобретает различные степени твердости и упругости.
    • Возможность » отпускания» посредством нагревания до красного каления и последующего медленного охлаждения.
    • Способность к обработке кузнечным молотом в нагретом состоянии, так как сталь отлично куется.
    • Возможность к разрезанию металла на тонкие полосы.

    Мягкость стали прямо пропорциональная количеству углерода в ее составе. Чем меньше в металле углерода, тем он мягче и легче в обработке. Мягкость стали повышается при отжиге, то есть » отпускании» металла. Для этого сталь нагревают докрасна, а затем подвергают процедуре медленного охлаждения.

    Сталь для изготовления различных изделий и художественной обработки производят в виде сортового материала. Для гравирования и чеканки чаще всего используют стали У8 и У10, где буквой » У» обозначено количество углерода в составе сплава.

    Лезвие ножей изготовлено из нержавеющей углеродистой стали

    Цветные металлы

    Цветные металлы стоят намного дороже черных, потому что они обладают множеством уникальных свойств. Главным из них является отсутствие реакции с магнитом, то есть цветные металлы не притягиваются и не намагничиваются. Кроме этого, большинство из них практически не поддаются окислению, поэтому изделия характеризуются длительностью срока службы.

    Выпуск цветных металлов для художественной обработки осуществляется в различных видах:

    • Ленты
    • Полосы
    • Чушки
    • Трубки
    • Проволока
    • Прутки
    • Листы

    Давайте рассмотрим характерные особенности наиболее популярных среди мастеров цветных металлов:

    • Медь — достаточно мягкий металл красивого красно — оранжевого оттенка, характеризующийся повышенной способностью к ковке и обладающий большой электропроводностью и способностью проводить тепло. Обработка меди не представляет особой сложности, но мастер должен иметь в виду большую вязкость данного металла.

    Медь можно паять с помощью олова и твердого припоя, Листовая медь является основным материалом для выполнения чеканки и граверных работ. Медная проволока используется для изготовления декоративных изделий и  ажурных скульптур.

    Медная раковина

    • Бронза — это сплав меди с оловом.  Количественное содержание олова влияет на цвет сплава, который может приобретать розовые, красные, желтые или серые оттенки. Если бронзовое изделие покрыть слоем патины ( декоративным налетом из оксида меди), то она приобретает благородный дымчато — зеленоватый оттенок и выглядит старинной и по — настоящему дорогой. Бронза чаще всего используется для инкрустации и литейных работ.

    Листовая бронза

    • Латунь — это сплав меди с цинком. Оттенок металла зависит от количества цинка. По своим качественным характеристикам латунь является более твердым сплавом, чем чистая красная медь, поэтому степень ее ковкости значительно ниже. По сравнению с медью латунь обладает некоторой хрупкостью, но вместе с тем она более упруга.

    Латунь легко поддается различным видам обработки, в частности, ее можно использовать для изготовления тонких деталей в инкрустациях, а также украшений различной конфигурации. Для чеканных работ используется в листовом виде.

    Чеканка на латуни

    • Цинк — прекрасно подходит для литья как в чистом виде, так и в сплавах с другими металлами. Чистый цинк куется плохо, однако его легко паять, гравировать и обрабатывать различными инструментами. Температура плавления составляет 419* С.

    Листовой цинк

    • Олово — цветной металл, с давних пор известный своей мягкостью и пластичностью.  Температура его плавления составляет всего 252* С.  В качестве компонента олово входит в состав различных видов бронзы. На изломе олово издает характерный, узнаваемый хруст. Чистое олово и его сплавы идеально подходят для изготовления инкрустаций. А еще олово используется для лужения и пайки посуды как в чистом виде, так и в сплавах со свинцом. При этом продукты его окисления безвредны.

    Набор оловянных солдатиков

    • Алюминий — цветной металл серебристо — белого цвета, который плавится при температуре около 658* С. Характерной особенностью алюминия является его легкость и простота в обработке металла. Литой алюминий достаточно хрупкий, а в прокатном ( отожженном) виде он приобретает желаемую пластичность.

    Алюминиевые изделия ремесленников Мадагаскара

    • Свинец — мягкий цветной  металл, имеющий синевато — серый оттенок. Он плавится при температуре 327* С, и хорошо противостоит коррозии. Однако следует отметить, что оксиды свинца являются ядовитыми. Свинец пригоден для литейных работ и изготовления формовых изделий.

    Свинец ( эталон)

    • Серебро — также относится к цветным, но при этом является еще и драгоценным металлом. Чистое серебро слишком мягкое, и поэтому его неудобно обрабатывать. Для изготовления изделий применяется в виде сплавов с медью. Серебряные вставки используются в инкрустациях, в гравировке, чеканке и черни.

    Антикварные серебряные изделия

    Рассмотрим некоторые свойства металлов, влияющие на качество выполнения художественных изделий:

    • Ковкость металла — ковкие пластичные металлы требуют большей силы резания, но при этом необходимо учитывать их вязкость. Кусок меди или свинца нужно рубить до конца, а латунь, цинк или сталь можно надколоть зубилом, а после просто сломать. Более твердая латунь при обточке дает гладкую поверхность, в то время как алюминий или медь как бы тянутся за резцом.
    • Хрупкость — это способность твердых материалов разрушаться вследствие механического воздействия без заметной пластической деформации. Это свойство противоположно пластичности. Сильно закаленная сталь, а также многие сорта латуни и бронзы являются очень хрупкими, и от сильных ударов раскалываются на куски. Хрупкость металла не всегда является признаком его твердости, например, отливка из цинка хрупкая, но не твердая. Закаленный стальной нож одновременно и тверд, и хрупок.
    • Упругость — это свойство металлов восстанавливать свою форму и объем после прекращения действия внешних  сил или нагревания, вызвавших деформацию. В большой  степени этим свойством обладают специальные сорта стали.
    • Плавление при нагревании — способность металла плавиться при нагревании является важным качеством, так как плавление считается одним из самых доступных и дешевых способов получения изделий из металла. Детали огромных машин и маленькие металлические скульптуры изготовляются одинаковым способом.

    Если возникает необходимость закалить деталь, и при этом сохранить вязкость металла, мастера используют токи высокой частоты. При этом деталь закаляется в глубину на несколько миллиметров. Однако вся остальная масса металла внутри изделия остается без изменений. И, наконец, металлические детали можно обрабатывать без нагревания — например, способом гравировки и резьбы по металлу.

    Серебряные изделия

    Источник: http://design-fly.ru/materiali/svojstva-metallov.html

    Общие физические и химические свойства металлов

    Благодаря  наличию свободных электронов (“электронного газа”) в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

    1)     Пластичность – способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

    2)    Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

    3)     Электропроводность. Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов.  При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение “электронного газа”.

    4)     Теплопроводность.  Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность – у висмута и ртути.

    5)     Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

    6)     Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий – литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее  5 г/см3 считаются “легкими металлами”.

    7)     Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

    1. Реакции металлов с неметаллами

    1)     С кислородом:
    2Mg + O2 →  2MgO

    2)     С серой:
    Hg + S →  HgS

    3)     С галогенами:
    Ni + Cl2  –t°→   NiCl2

    4)     С азотом:
    3Ca + N2  –t°→   Ca3N2

    5)     С фосфором:
    3Ca + 2P  –t°→   Ca3P2

    6)     С водородом (реагируют только щелочные и щелочноземельные металлы):
    2Li + H2 →  2LiH

    Ca + H2 →  CaH2

    2. Реакции металлов с кислотами

    1)     Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

    Mg + 2HCl →   MgCl2 + H2

    2Al+ 6HCl →  2AlCl3 + 3H2

    6Na + 2H3PO4 →  2Na3PO4 + 3H2­

    2) С кислотами-окислителями:

    При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

    Zn + 2H2SO4(К) → ZnSO4 + SO2 + 2H2O

    4Zn + 5H2SO4(К) → 4ZnSO4 + H2S + 4H2O

    3Zn + 4H2SO4(К) → 3ZnSO4 + S + 4H2O

    2H2SO4(к) + Сu → Сu SO4 + SO2 + 2H2O

    10HNO3 + 4Mg → 4Mg(NO3)2 + NH4NO3 + 3H2O

    4HNO3(к) + Сu → Сu (NO3)2 + 2NO2 + 2H2O

    3. Взаимодействие металлов с водой

    1)     Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

    2Na + 2H2O →  2NaOH + H2

    Ca+ 2H2O →  Ca(OH)2 + H2

    2)     Металлы средней активности окисляются водой при нагревании до оксида:

    Zn + H2O  –t°→   ZnO + H2­

    3)     Неактивные (Au, Ag, Pt) – не реагируют.

    4.    Вытеснение более активными металлами менее активных металлов из растворов их солей:

    Cu + HgCl2 →  Hg+ CuCl2

    Fe+ CuSO4 →  Cu+ FeSO4

    В промышленности часто используют не чистые металлы, а их смеси — сплавы, в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь) являются уже достаточно твердыми и широко используются в машиностроении.

    Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем – дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении.

    Сплавы железа с углеродом (и добавками других металлов) – это широко известные чугун и сталь.

    Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой, в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

    Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

    Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией. Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте – металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

    При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа+, Са2+,А13+,Fе2+ и Fе3+)

    Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg – только серной (концентрированной) и азотной кислотами, а Рt и Аи – «царской водкой».

    Понравилась статья? Поделиться с друзьями:
    Металлы и их обработка
    -- Сайдб лев (липк) -->
    Как варить нержавейку электродом

    Закрыть
    Для любых предложений по сайту: [email protected]