Как влияют легирующие элементы на свойства стали

Легирование стали: влияние углерода, марганца и кремния

Как влияют легирующие элементы на свойства стали

Легирующих элементов, которые применяют в сталях, насчитывается более двух десятков. Здесь мы рассмотрим влияние на сталь самых распространенных (часто неизбежных) легирующих элементов –   углерода, марганца и кремния.

Влияние углерода на свойства сталей

Углерод является главным упрочняющим элементом во всех сталях, кроме аустенитных нержавеющих сталей и некоторых других высоколегированных сталей. Упрочняющий эффект углерода состоит из упрочнения твердым раствором и упрочнения за счет дисперсного выделения карбидов. С увеличением содержания углерода в стали ее прочность увеличивается, но пластичность и свариваемость снижается.

Углерод имеет умеренную тенденцию к макросегрегации в ходе кристаллизации. Макросегрегация углерода обычно проявляется более значительно, чем у всех других легирующих элементов. Углерод имеет сильную тенденцию сегрегировать на дефектах в сталях, таких как границы зерен и дислокации. Карбидообразующие элементы могут взаимодействовать с углеродом и  образовывать «легированные» карбиды. 

Влияние марганца на свойства сталей

Марганец присутствует практически во всех сталях в количестве от 0,30 % и более. Марганец применяют для удаления из стали кислорода и серы. Он имеет меньшую тенденцию к сегрегации, чем любой другой легирующий элемент. Марганец благоприятно влияет на качество поверхности во всем диапазоне содержания углерода, за исключением сталей с очень низким содержанием углерода, а также снижает риск красноломкости. Марганец благоприятно влияет на ковкость и свариваемость сталей.

Марганец не образует своего карбида, а только растворяется в цементите и образует в сталях легированный цементит. Марганец способствует образованию аустенита и поэтому расширяет аустенитную область диаграммы состояния. Большое содержание марганца (более 2 %) приводит к возрастанию тенденции к растрескиванию и короблению при закалке. Присутствие в сталях марганца поощряет такие примеси как фосфор, олово, сурьма и мышьяк сегрегировать к границам зерен с возникновением отпускной хрупкости.

Влияние кремния на свойства сталей 

Кремний является одним из основных раскислителей, которые применяют при выплавке сталей. Поэтому содержание кремния задает тип произведенной стали. Спокойные углеродистые стали могут содержать кремния до максимум 0,60 %. Полуспокойные стали могут содержать умеренные количества кремния, например, 0,10 %.

Кремний полностью растворяется в феррите при содержании кремния до 0,30 %. Он увеличивает прочность феррита, почти не снижая его пластичности. При содержании кремния выше 0,40 % в углеродистой стали общего назначения происходит существенное снижение пластичности.

В комбинации с марганцем или молибденом кремний обеспечивает более высокую закаливаемость стали. Добавление кремния в хромоникелевые аустенитные стали повышает их стойкость к коррозии под напряжением.

В термически упрочняемых сталях кремний является важным легирующим элементом, повышает способность сталей к термическому упрочнению и их износостойкость, увеличивает предел упругости и предел текучести. Кремний не образует карбидов и не содержит цементита или других карбидов.

Он растворяется в мартенсите и замедляет распад легированного мартенсита до 300 °С.

Источник: https://steel-guide.ru/klassifikaciya/legirovannye-stali/legirovanie-stali-vliyanie-ugleroda-marganca-i-kremniya.html

Легированные стали: классификация и маркировка

Как влияют легирующие элементы на свойства стали

Легированная сталь — это сталь, содержащая специальные легирующие добавки, которые позволяют в значительной степени менять ряд ее механических и физических свойств. В данной статье мы разберемся, что из себя представляет классификация легированных сталей, а также рассмотрим их маркировку.

Круглый прокат из легированной стали

Классификация легированных сталей

По содержанию в составе стали углерода идет разделение на:

В зависимости от общего количества в их составе легирующих элементов, которые содержит легированная сталь, она может принадлежать к одной из трех категорий:

  1. низколегированная (не более 2,5%);
  2. среднелегированная (не более 10%);
  3. высоколегированная (от 10% до 50%).

Свойства, которыми обладают легированные стали, определяет и их внутренняя структура. Поэтому признаку классификация легированных сталей подразумевает разделение на следующие классы:

  1. доэвтектоидные — в составе присутствует избыточный феррит;
  2. эвтектоидные — сталь имеет перлитную структуру;
  3. заэвтектоидные — в их структуре присутствует вторичные карбиды;
  4. ледебуритные — в структуре присутствует первичные карбиды.

По своему практическому применению легированные конструкционные стали могут быть: конструкционные (подразделяются на машиностроительные или строительные), инструментальные, а также стали с особыми свойствами.

Назначение конструкционных легированных сталей:

  • Машиностроительные — служат для производства деталей всевозможных механизмов, корпусных конструкции и тому подобного. Отличаются тем, что в подавляющем большинстве случаев проходят термическую обработку.
  • Строительные — чаще всего используются при изготовлении сварных металлоконструкций и термической обработке подвергаются в редких случаях.

Классификация машиностроительных легированных сталей выглядит следующим образом.

  • Жаропрочные стали активно используются для производства деталей, предназначенных для работы в сфере энергетики (например, комплектующие паровых турбин), а также из них делают особо ответственный крепеж. В качестве легирующих добавок в них используют хром, молибден, ванадий. Жаропрочные относятся к среднеуглеродистым, среднелегированным, перлитным сталям.
  • Улучшаемые (из категорий среднеуглеродистых, низко- и среднелегированных) стали, при производстве которых используют закалку, применяются для изготовления сильно нагруженных деталей, испытывающих нагрузки переменного характера. Отличаются чувствительностью к концентрации напряжения в рабочей детали.
  • Цементуемые (из категорий низкоуглеродистых, низко- и среднелегированных) стали, как можно понять по названию, подвергаются цементации и следующей после нее закалке. Их применяют для изготовления всевозможных шестерен, валов и других похожих по назначению деталей.

Зависимость толщины цементованного слоя от температуры и времени обработки

Классификация строительных легированных сталей подразумевает их разделение на следующие виды:

  • Массовая — низколегированные стали в виде труб, фасонного и листового проката.
  • Мостостроительная — для автомобильных и ж/д мостов.
  • Судостроительная хладостойкая, нормальная и повышенной прочности — хорошо противостоит хрупкому разрушению.
  • Судостроительная хладостойкая высокой прочности — для сварных конструкций, которым предстоит работать в условиях низких температур.
  • Для горячей воды и пара — допускается рабочая температура до 600 градусов.
  • Низкоопущенные высокой прочности — применяются в авиации, чувствительны к концентрации напряжений.
  • Повышенной прочности с применением карбонитритного упрочнения, создающим мелкозернистую структуру стали.
  • Высокой прочности с применением карбонитритного упрочнения.
  • Упрочненные прокаткой при температуре 700-850 градусов.

Применение инструментальных легированных сталей

Инструментальная легированная сталь широко используется при производстве разнообразного инструмента. Но помимо явного превосходства над углеродистой сталью в плане твердости и прочности, у легированной стали есть и слабая сторона — более высокая хрупкость.

Поэтому для инструмента, который активно подвергается ударным нагрузкам, такие стали не всегда подходят.

Тем не менее при производстве огромного перечня режущего, ударно-штампового, измерительного и прочего инструмента именно инструментальные легированные стали остаются незаменимыми.

Отдельно можно отметить быстрорежущую сталь, отличительными особенностями которой являются крайне высокая твердость и красностойкость до температуры 600 градусов. Такая сталь способна выдерживать нагрев при высокой скорости резания, что позволяет увеличить скорость работы металлообрабатывающего оборудования и продлить срок его службы.

К отдельной категории относятся легированные конструкционные стали, наделенные особыми свойствами: нержавеющие, с улучшенными электрическими и магнитными характеристиками. От того, какие элементы, а также в каких количествах преимущественно содержатся в них, они могут быть хромистыми, никелевыми, хромоникельмолибденовыми. Также они делятся на трех-, четырех- и более компонентные по числу содержащихся в них легирующих добавок.

Легирующие элементы и их влияние на свойства сталей

Маркировка легированных сталей указывает на то, какие добавки в ней содержатся, а также на их количественное значение. Но также важно знать и то, какое именно влияние на свойства металла оказывает каждый из этих элементов в отдельности.

Хром

Добавка хрома увеличивает коррозионную стойкость, повышает прочность и твердость, является основным компонентом при создании нержавеющей стали.

Никель

Добавление никеля повышает пластичность, вязкость стали и коррозионную стойкость.

Титан

Титан уменьшает зернистость внутренней структуры, повышая прочность и плотность, улучшает обрабатываемость и коррозионную стойкость.

Ванадий

Присутствие ванадия уменьшает зернистость внутренней структуры, что повышает текучесть и порог прочности на разрыв.

Молибден

Добавка молибдена дает возможность улучшить прокаливаемость, повысить коррозионную устойчивость и снизить хрупкость.

Вольфрам

Вольфрам повышает твердость, не дает зернам увеличиваться при нагреве и снижает хрупкость при отпуске.

Кремний

При содержании до 1-15% кремний повышает прочность, сохраняя вязкость. При увеличении процента содержания кремния повышается магнитопроницаемость и электросопротивление. Также данный элемент увеличивает упругость, стойкость к коррозии и сопротивляемость к окислению, но также повышает хрупкость.

Кобальт

Введение кобальта увеличивает ударопрочность и жаропрочность.

Алюминий

Добавление алюминия способствует повышению окалиностойкости.

Таблица назначения некоторых видов стали

Отдельно стоит упомянуть примеси и их влияние на свойства сталей. Любая сталь всегда содержит технологические примеси, так как полностью удалить их из состава стали чрезвычайно трудно. К такого рода примесям относятся углерод, серу, марганец, кремний, фосфор, азот и кислород. Углерод

Оказывает на свойства стали очень значительное влияние. Если его содержится до 1,2%, то углерод способствует повышению твердости, прочности, предела текучести металла. Превышение указанного значения способствует тому, что начинает значительно ухудшаться не только прочность, но и пластичность.

Марганец

Если количество марганца не превышает 0,8%, то он считается технологической примесью. Он призван повысить степень раскисления, а также противостоять негативному влиянию серы на сталь.

Сера

При превышении содержания серы выше 0,65% механические свойства стали существенно снижаются, речь идет об уменьшении уровня пластичности, коррозионной стойкости, ударной вязкости. Также высокое содержание серы негативно влияет на свариваемость стали.

Фосфор

Даже незначительное превышение содержания фосфора выше необходимого уровня чревато повышением хрупкости и текучести, а также снижением вязкости и пластичности стали.

Азот и кислород

При превышении определенных количественных значений в составе стали вкрапления данных газов повышают хрупкость, а также способствуют понижению ее выносливости и вязкости.

Водород

Слишком большое содержание водорода в стали ведет к увеличению ее хрупкости.

Маркировка легированных сталей

К категории легированных относится большое разнообразие сталей, что и вызвало необходимость в систематизации их буквенно-цифрового обозначения. Требования к их маркировке оговаривает ГОСТ 4543-71, согласно которому сплавы, наделенные особыми свойствами, обозначаются маркировкой, где на первой позиции стоит буква. По этой букве как раз и можно определить, что сталь по своим свойствам относится к определенной группе.

Пример расшифровки маркировки легированной стали

Так, если маркировка легированных сталей начинается с букв «Ж», «Х» или «Е» — перед нами сплав нержавеющей, хромистой или магнитной группы. Сталь, которая относится к нержавеющей хромоникелевой группе, обозначается буквой «Я» в ее маркировке. Сплавы, относящиеся к категории шарикоподшипниковых и быстрорежущих инструментальных, обозначаются буквами «Ш» и «Р».

Стали, относящиеся к легированным, могут принадлежать к категории высококачественных, а также особо высококачественных. В таких случаях в конце их марки ставится буква «А» или «Ш» соответственно. Стали, которые обладают обычным качеством, таких обозначений в своей маркировке не имеют. Специальное обозначение также имеют сплавы, которые получены прокатным методом. В таком случае в маркировке присутствует буква «Н» (нагартованный прокат) или «ТО» (термически обработанный прокат).

Точный химический состав любой легированной стали можно посмотреть в нормативных документах и справочной литературе, но получить такую информацию позволяет и умение разбираться в ее маркировке. Первая цифра позволяет понять, сколько углерода (в сотых долях процента) содержит легированная сталь. После этой цифры в марке перечисляются буквенные обозначения легирующих элементов, которые содержатся дополнительно.

ЭТО ИНТЕРЕСНО:  Как классифицируются стали по качеству

Обозначение легирующих элементов в маркировке стали

После каждой такой буквы проставляется количественное содержание указанного элемента. Выражается это содержание в целых долях. После буквы, обозначающей элемент, может не стоять никакой цифры. Означает это то, что его содержание в стали не превышает 1,5%.

Государственный стандарт 4543-71 регламентирует обозначение легирующих добавок, входящих в состав легированной стали: А — Азот, Б — Ниобий, В —Вольфрам, Г — Марганец, Д — Медь, К — Кобальт, М — Молибден, Н — Никель, П — Фосфор, Р — Бор, С — Кремний, Т — Титан, Ц — Цирконий, Ф — Ванадий, Х — Хром, Ю — Алюминий.

Использование легированных сталей

Сегодня сложно найти сферу жизни и деятельности, в которых бы не использовалась легированная сталь. Из инструментальных и конструкционных сталей производится практически любой инструмент: резцы, фрезы, штампы, измерительные устройства, шестерни, пружины, подвески, растяжки и многое другое. Нержавеющие легированные стали активно используются и в быту, из них изготавливают посуду, корпуса и другие элементы многих видов бытовой техники.

Легированные стали по причине их высокой стоимости используются только для производства самых ответственных конструкций и деталей, где изделия из других металлов просто не смогут выполнить возложенные на них задачи.

Источник: http://met-all.org/stal/legirovannye-stali-markirovka.html

Легирование стали

Как влияют легирующие элементы на свойства стали

Легирование стали необходимо для изготовления инструментов и полупроводников. В первом случае особое внимание обращают на механические свойства, а во втором — на токопроводящие характеристики.

Это требует не только разных добавок (например, легирование стали алюминием), но и разных технологических процессов.

Легированная сталь представляет собой железоуглеродистый сплав с дополнительными элементами (никель, хром, молибден, кобальт и алюминий) для придания этой стали особых характеристик, таких как: устойчивость к коррозии, гибкость и твердость, что делает ее лучше обычной углеродной стали.

Сплавы, как правило, обозначаются в соответствии с преобладающими элементами, такими как никелевая сталь, хромистая сталь и хромованадиевая сталь. Сплавы можно встретить практически во всех отраслях промышленности, от гражданского строительства до судостроения, в нефтяной, автомобильной и авиационной отраслях.

Разнообразие возможных сплавов практически бесконечно, как и разнообразие характеристик.

Процесс легирования

Легированная сталь может быть произведена несколькими способами. Легирование  бывает поверхностным и объемным. В первом случае легирующие добавки вводятся только в верхний слой. Легирующий элемент проникает неглубоко, примерно на 1-2 мм.

Это необходимо для создания на поверхности металла определенных свойств (например, антифрикционных). Поверхностное легирование намного лучше напыления, а поэтому часто применяется при изготовлении керамики и стекла.

Введение добавок во весь объем металла предусматривается объемным легированием.

Легирующих добавок может быть несколько. Они могут быть как металлическими, так и не металлическими (например, фосфор). Для получения различных характеристик легирование может производиться на различных этапах плавки.

Добавление легирующих элементов направлено на создание микроструктурных изменений, которые, в свою очередь, способствуют изменению физико-механических свойств материала, позволяя ему выполнять определенные функции.

Легирование полупроводников проводится с помощью термодиффузии, нейтронно-трансмутационного легирования и ионной имплантацией. Ионное легирование проводится в два этапа. Сначала проводится загонка легирующих атомов, а затем их активируют.

Распределение элементов зависит от температуры и времени, глубина вхождения — от энергии. При термодиффузии происходит осаждение легирующих элементов, отжиг и удаление легирующих элементов.

Нейтронно-трансмутационное легирование происходит благодаря ядерным реакциям — в данном случае легирующие и легируемые элементы объединяются монокристаллический материал.

Свойства и назначение

Наиболее часто используемыми легирующими элементами являются никель, марганец, хром, кремний, свинец, селен и бор. Менее часто используются алюминий, медь, ниобий, цирконий и вольфрам.

Назначение этих элементов очень разнообразно, и при использовании в нужных пропорциях стали получают с определенными характеристиками, которые, однако, не могут быть достигнуты с обычными углеродистыми сталями.

Сплавы обычно классифицируются с учетом элементов, содержание которых наиболее велико, и которые называются базовыми компонентами. Элементы, которые находятся в меньшей пропорции, рассматриваются как вторичные компоненты.

Железо само по себе не особо прочное, но его прочность значительно возрастает, когда он легируется углеродом, а затем быстро охлаждается для производства стали. Некоторые характеристики стали — мягкая, полумягкая, полутвердая, твердая — в значительной степени обусловлены содержанием углерода, которое может составлять от 0,10 до 1,15%.

Риски

Некоторые ферросплавы производятся и используются в форме мелких частиц; переносимая по воздуху пыль представляет собой потенциальную опасность токсичности, пожара и взрыва. Кроме того, профессиональное воздействие паров при изготовлении некоторых сплавов может привести к серьезным проблемам со здоровьем. Ряд сплавов олова опасен для здоровья (особенно при высоких температурах) из-за вредных свойств металлов, с которыми можно легировать олово (например, свинец).

Никель, осмий, рутений, медь, золото, серебро и иридий легируются платиной для повышения твердости. Сплавы, образованные с кобальтом, приобрели значение благодаря своим ферромагнитным свойствам. Родий используется в качестве антикоррозийного электролитического покрытия для защиты серебра от потускнения.

Родий легируется платиной и палладием, чтобы получить очень твердые сплавы.Цель легирования медью — повысить коррозионную стойкость.Также медью легируют серебро.

В чистом виде серебро слишком мягкое для изготовления монет, столовых приборов и украшений, для всех областей применения оно упрочняется путем легирования медью.

Черные сплавы

Черные сплавы — это железо и его сплавы. Значительное содержание углерода делает чугун очень хрупким. Несмотря на свою хрупкость и более низкие механические свойства, чем у стали, их низкая себестоимость, простота литья и специфические характеристики делают их одним из самых ценных в мире продуктов с самым большим тоннажем производства.

Цветные сплавы

Цветные сплавы — это сплавы, которые не содержат железа или содержат относительно небольшое количество железа. Их характеристики — значительная коррозионная стойкость, высокая электро- и теплопроводность, низкая плотность и простота производства.

Нержавеющая сталь

Общие характеристики нержавейки делают ее универсальным материалом, который хорошо адаптируется к требованиям сегодняшнего дня. Любые виды сплавов имеют свои преимущества в зависимости от химического состава.

Эстетика. Существует ряд видов отделки поверхности: от матовой до глянцевой, от сатиновой до гравировки. Отделка также может быть узорчатой или окрашенной, что делает нержавеющую сталь уникальным и эстетичным материалом. Архитекторы часто выбирают этот материал для строительных работ, дизайна интерьера и городской мебели.

Механические свойства.Нержавейка обладает лучшими механическими свойствами при комнатной температуре по сравнению с другими материалами, что является преимуществом в строительном секторе, так как позволяет снизить вес на м² или уменьшить размеры элементов конструкции.

Хорошая эластичность и твердость в сочетании с неплохой износостойкостью (трение, истирание, удары, эластичность) позволяют использовать нержавейку в широком спектре проектов.

Кроме того, нержавейка может устанавливаться на стройплощадке, несмотря на зимние температуры, без риска хрупкости или поломки, что не препятствует удлинению сроков строительства.

Огнеупорность. По сравнению с другими металлами, нержавейка обладает лучшей огнеупорностью в конструкции благодаря высокой температуре плавления (выше 800 °C). Нержавейка не выделяет токсичных паров.

Коррозионная стойкость: при содержании хрома 10,5% нержавеющая сталь постоянно защищена пассивным слоем оксида хрома, который естественным образом образуется на ее поверхности при контакте с влажностью воздуха.

При повреждении поверхности пассивный слой восстанавливается. Это обеспечивает коррозионную стойкость.

Влияние легирующих элементов на прокаливаемость стали

Известно, что активные легирующие элементы стали, такие как хром и молибден, образуют в ней карбиды. Это значит, что эти элементы будут стремиться войти в карбидную часть перлита и бейнита при их образовании из аустенита.

Диффузия углерода при распаде аустенита: от 0,8 % до 0,02 % и 6,7 %

Когда некоторый объем аустенита превращается в перлит или бейнит в обыкновенных углеродистых сталях, то атомы углерода должны перестраиваться из однородного распределения, которое они имеют в аустените. В уже превращенном из аустенита объеме может вообще не быть углерода (0,02 %) в ферритном участке и быть 6,7 % углерода в цементитном участке. Это перераспределение атомов происходит за счет диффузии.

Труднее диффузия – медленнее распад аустенита

Точно также при превращении аустенита легированной стали легирующие атомы, например, хрома и марганец, также должны перераспределиться из однородного распределения в аустените до высокого содержания в карбидах и низкого – в феррите. Однако диффузионное перераспределение для легирующих элементов намного труднее, для углерода.

Дело в том, что у них коэффициент диффузии намного меньше, чем у углерода. Поэтому присутствие легирующих элементов в стали затрудняет образование перлита и бейнита.

Соответственно кривые начала перлитного и бейнитного превращений на диаграммах превращения аустенита – изотермического и непрерывного – будут сдвигаться вправо, в более, так сказать, поздние времена.

Все легирующие добавки в стали, кроме кобальта, сдвигают кривые начала образования феррита, перлита и бейнита на диаграммах изотермического превращения вправо.

Влияние никеля на прокаливаемость стали

Однако известно, что, например, никель довольно таки неактивный элемент, а тоже замедляют скорость образования перлита и бейнита. В этом случае причина заключается во влиянии никеля на фазовую диаграмму. Просто это невозможно объяснить. Однако конечный результат легко запомнить: почти все легирующие элементы в стали замедляют распад аустенита с образованием феррита, перлита или бейнита.

Как хром замедляет превращение аустенита

На рисунке ниже показано сравнение диаграмм изотермического превращения аустенита для двух американских сталей — углеродистой стали 1060 и легированной стали 5160 (аналоги наших сталей 60Г и 50ХГА) – с различным содержанием хрома. Можно сказать, что сталь 5160 – это та же сталь 1060, но с добавлением 0,8 % хрома.

Рисунок – Диаграммы изотермического превращения для сталей 1060 и 5160.Легирование стали 5160 хромом сдвигает нос кривых превращения вправо.

(А — аустенит, F — феррит, С — цементит)

Рисунок показывает, что такое малое содержание хрома оказывает значительное влияние на положение кривых начала превращения аустенита на диаграмме изотермического превращения. Даже при том, что размер зерна в стали 5160 оказался меньше, чем у стали 1060, нос диаграммы изотермического превращения у стали 5160 сдвинут вправо примерно на 5 секунд, а у стали 1060 – всего лишь на 0,5 секунд.

ЭТО ИНТЕРЕСНО:  Что называется улучшением стали

  Дымовые трубы для котельных из нержавеющей стали

Влияние на прокаливаемость размера зерна стали

Влияние зерна на прокаливаемость стали связано с тем, что распад аустенита всегда начинается на границах его зерен. Площадь границ зерен, естественно, зависит от размера зерна. Большой размер зерен будет снижать общую величину площади границ зерен в единице объема.

Это и приводит к сдвигу кривых начала превращения – увеличения задержки начала превращения – и, тем самым, повышает прокаливаемость стали. Именно поэтому положение кривых на диаграмме изотермического превращения зависит от размера зерна аустенита.

По этой же причине на диаграммах изотермического превращения всегда указывают размер зерна аустенита.

Источник: https://steelfactoryrus.com/vliyanie-legiruyuschih-elementov-na-prokalivaemost-stali/

Сталь — легирующие элементы

Влияние легирующих элементов.Присутствие в стали легирующих элементов улучшает ее свойства.

Легированная сталь имеет высокую прочность и вязкость

Некоторые легирующие элементы, например никель, кремний, кобальт, медь, не образуют с углеродом химических соединений — карбидов — и в основном распределяются в феррите.

Другие же элементы — вольфрам, хром, ванадий, марганец, молибден, титан и др. — образуют с углеродом карбиды.

Наличие карбидов в легированной стали способствует повышению ее твердости и прочности, а в инструментальной стали — и режущих свойств.

Легирующие элементы не только улучшают механические свойства стали (главным образом в термически обработанном состоянии), но в значительной степени изменяют ее физические и химические свойства. Влияние отдельных легирующих элементов на свойства стали сводится в основном к следующему:

  • Марганец повышает прочность и твердость стали, увеличивает прокаливаемость, уменьшает коробление при закалке, повышает режущие свойства стали, но вместе, с тем способствует росту зерна при нагреве, чем снижает стойкость стали к ударным нагрузкам.
  • Хром затрудняет рост зерна при нагреве, повышает механические свойства стали при статической и ударной нагрузке, повышает прокаливаемость и жаростойкость, режущие свойства и стойкость на истирание. При значительных количествах хрома сталь становится нержавеющей и жаростойкой.
  • Кремний значительно повышает упругие свойства стали, но несколько снижает ударную вязкость.
  • Никель повышает упругие свойства стали, не снижая вязкости, противодействует росту зерна, улучшает прокаливаемость и механические свойства стали. При значительных количествах никеля сталь становится немагнитной, коррозионностойкой и жаропрочной.
  • Молибден противодействует росту зерна, повышает твердость и режущие свойства стали вследствие образования карбидов, уменьшает склонность стали к хрупкости при отпуске, повышает жаростойкость стали.
  • Кобальт повышает прочность стали при ударных нагрузках, улучшает жаропрочность и магнитные свойства стали.
  • Вольфрам, так же как и молибден, повышает твердость и режущие свойства стали, уменьшает рост зерен при нагреве, повышает жаростойкость.
  • Ванадий способствует раскислению стали, противодействует росту зерна, повышает твердость и режущие свойства стали.
  • Титан является раскислителем стали, способствуя также удалению из нее азота, благодаря чему сталь получается более плотной, однородной и жаропрочной.

Наиболее эффективно повышение свойств стали под влиянием легирующих элементов наблюдается в термически обработанном состоянии. Поэтому в огромном большинстве случаев детали из легированных сталей применяют после закалки и отпуска.

Максимальное значение механических свойств достигается одновременным присутствием в стали двух или более легирующих элементов.

Таким образом, в машиностроении наряду с хромистыми, марганцовистыми, кремнистыми и другими сталями широко применяются и более сложные — хромоникелевые, хромокремнемарганцовистые, хромовольфрамовые и другие стали.

Почти все легирующие элементы понижают значение критических точек при охлаждении и уменьшают критическую скорость закалки стали.

Практически это значит, что легированные стали, содержащие эти элементы, следует охлаждать при закалке не в воде, как это необходимо для углеродистых сталей, а в масле.

Таким образом, легированная сталь удовлетворяет самым разнообразным требованиям машиностроительной промышленности и во многих случаях заменяет более дорогие цветные металлы и сплавы.

Применение легированной стали непрерывно расширяется в связи с усовершенствованием конструкций машин и приборов.

§

Источник: http://www.Conatem.ru/tehnologiya_metallov/stal-legiruyushhie-elementy.html

Влияние легирующих элементов на свойства стали. Виды, марки и назначение сталей

Сталь – один из самых востребованных материалов в мире сегодня. Без нее сложно представить любую существующую строительную площадку, машиностроительные предприятия, да и много других мест и вещей, которые нас окружают в повседневной жизни. Вместе с тем, этот сплав железа с углеродом бывает достаточно различным, потому в данной статье будет рассмотрено влияние легирующих элементов на свойства стали, а также ее виды, марки и предназначение.

Общая информация

Сегодня многие марки стали широко применяются практически в любой сфере жизнедеятельности человека. Это во многом объясняется тем, что в этом сплаве оптимально сочетается целый комплекс механических, физико-химических и технологических свойств, которые не имеют какие-либо другие материалы. Процесс выплавки стали непрерывно совершенствуется и потому ее свойства и качество позволяют получить требуемые показатели работы получаемых в итоге механизмов, деталей и машин.

Классификация по назначению

Каждая сталь в зависимости от того, для чего она создана, в обязательном порядке может быть причислена в одну из следующих категорий:

  • Конструкционная.
  • Инструментальная.
  • Специального назначения с особыми свойствами.

Самый многочисленный класс – это конструкционные стали, разработанные для создания разнообразных строительных конструкций, приборов, машин. Конструкционные марки разделяются на улучшаемые, цементуемые, пружинно-рессорные, высокопрочные.

Инструментальные стали дифференцируют в зависимости от того, для какого инструмента они производятся: режущего, измерительного и т. д. Само собой, что влияние легирующих элементов на свойства стали этой группы также велико.

Специальные стали имеют свое разделение, которое предусматривает следующие группы:

  • Нержавеющие (они же коррозионностойкие).
  • Жаропрочные.
  • Жаростойкие.
  • Электротехнические.

Группы сталей по химическому составу

Классификацией озвучиваются стали в зависимости от образующих их химических элементов:

  • Углеродистые марки стали.
  • Легированные.

При этом обе эти группы дополнительно разделяются еще и по количеству содержащегося в них углерода на:

  • Низкоуглеродистые (карбона менее 0,3%).
  • Среднеуглеродистые (концентрация карбона равно 0,3 – 0,7 %).
  • Высокоуглеродистые (карбона более 0,7%).

Что такое легированная сталь?

Под этим определением следует понимать стали, в которых содержатся, параллельно с постоянными примесями, еще и добавки, внедряемые в структуру сплава, с целью увеличения механических свойств полученного в конечном счете материла.

Несколько слов о качестве стали

Этот параметр данного сплава подразумевает под собой совокупность свойств, которые, в свою очередь, обуславливаются непосредственно процессом его производства. К подобным характеристикам, которым подчиняются и легированные инструментальные стали, относятся:

  • Химический состав.
  • Однородность структуры.
  • Технологичность.
  • Механические свойства.

Качество любой стали напрямую зависит от того, сколько содержится в ней кислорода, водорода, азота, серы и фосфора. Также не последнюю роль играет и метод получения стали. Самым точным с точки зрения попадния в требуемый диапазон примесей является сопособ выплавки стали в электропечах.

Легированная сталь и изменение ее свойств

Легированная сталь, марки которой содержат в своей маркировке буквенные обозначения вводимых принудительно элементов, меняет свои свойства не только от этих сторонних веществ, но и также от их взаимного действия между собой.

Если рассматривать конкретно углерод, то по взаимодействию с ним легирующие элементы можно условно разделить на две большие группы:

  • Элементы, которые формируют с углеродом химическое соединение (карбид) – молибден, хром, ванадий, вольфрам, марганец.
  • Элементы, не создающие карбидов – кремний, алюминий, никель.

Стоит заметить, что стали, которые легируются карбидобразующими веществами, имеют очень высокую твёрдость и повышенное сопротивление износу.

Низколегированная сталь (марки: 20ХГС2, 09Г2, 12Г2СМФ, 12ХГН2МФБАЮ и другие). Особое место занимает сплав 13Х, который достаточно тверд для изготовления из него хирургического, гравировального, ювелирного оборудования, бритв.

Расшифровка

легирующих элементов в стали можно определить по ее маркировке. Каждая из таких вводимых в сплав составляющих имеет своё буквенное обозначение. Например:

  • Хром – Cr.
  • Ванадий –V.
  • Марганец –Mn.
  • Ниобий – Nb.
  • Вольфрам –W.
  • Титан – Ti.

Иногда в начале индекса марки стали стоят буквы. Каждая из них несет особый смысл. В частности, буква «Р» означает, что сталь является быстрорежущей, «Ш» сигнализирует, что сталь шарикоподшипниковая, «А» – автоматная, «Э» – электротехническая и т. д. Высококачественные стали имеют в своем цифро-буквенном обозначении в конце литеру «А», а особо качественные содержат в самом конце маркировки букву «Ш».

Воздействие легирующих элементов

В первую очередь следует сказать, что основополагающее влияние на свойства стали оказывает углерод. Именно этот элемент обеспечивает с повышением своей концентрации увеличение прочности и твердости при снижении вязкости и пластичности. Кроме того, повышенная концентрация углерода гарантирует ухудшение обрабатываемости резанием.

хрома в стали напрямую влияет на ее коррозионную стойкость. Этот химический элемент формирует на поверхности сплава в агрессивной окислительной среде тонкую защитную оксидную пленку. Однако для достижения такого эффекта в стали хрома должно быть не менее 11,7%.

Особого внимания заслуживает алюминий. Его применяют в процессе легирования стали для удаления кислорода и азота после ее продувки, дабы поспособствовать уменьшению старения сплава. Кроме того, алюминий значительно повышает ударную вязкость и текучесть, нейтрализует крайне вредное влияние фосфора.

Ванадий – это особый легирующий элемент, благодаря которому легированные инструментальные стали получают высокую твёрдость и прочность. При этом в сплаве уменьшается зерно и повышается плотность.

Легированная сталь, марки которой содержат вольфрам, наделена высокой твёрдостью и красностойкостью. Вольфрам хорош также и тем, что он полностью устраняет хрупкость во время запланированного отпуска сплава.

Для увеличения жаропрочности, магнитных свойств и сопротивления значительным ударным нагрузкам сталь легируют кобальтом. А вот одним из тех элементов, который не оказывает какого-либо существенного влияния на сталь, является кремний. Однако в тех марках стали, которые предназначены для сварных металлоконструкций, концентрация кремния должна быть обязательно в пределах 0,12-0,25 %.

Значительно повышает механические свойства стали магний. Его также используют в качестве десульфуратора в случае использования внедоменной десульфурации чугуна.

Низколегированная сталь (марки ее содержат легирующих элементов менее 2,5%) очень часто содержит марганец, что обеспечивает ей непременное увеличение твердости, износоустойчивости при сохранении оптимальной пластичности. Но при этом концентрация этого элемента должна быть более 1%, иначе не получится достигнуть указанных свойств.

Углеродистые марки стали, выплавляемые для различных масштабных строительных конструкций, содержат в себе медь, которая обеспечивает максимальные антикоррозионные свойства.

Для увеличения красностойкости, упругости, предела прочности при растяжении и стойкости к коррозии в сталь обязательно вводят молибден, который также еще и повышает сопротивление окислению металла при нагреве до высоких температурных показателей. В свою очередь церий и неодим применяются для снижения пористости сплава.

Рассматривая влияние легирующих элементов на свойства стали, нельзя обойти вниманием и никель. Данный металл позволяет стали получить превосходную прокаливаемость и прочность, повысить пластичность и ударопрочность и понизить предел хладноломкости.

Очень широко используется в качестве легирующей добавки и ниобий. Его концентрация, в 6-10 раз превышающая количество обязательно присутсвтующего углерода в сплаве, позволяет устранить межкристаллитную коррозию нержавеющей марки стали и предохраняет сварные швы от крайне нежелательного разрушения.

Титан позволяет получить самые оптимальные показатели прочности и пластичности, а также улучшить коррозионную стойкость. Те стали, которые содержит эту добавку, очень хорошо подвергаются обработке различным инструментом специального назначения на современных металлорежущих станках.

ЭТО ИНТЕРЕСНО:  Как соединить три провода в коробке

Введение в стальной сплав циркония дает возможность получить требуемую зернистость и при необходимости оказывать влияние именно на рост зерна.

Случайные примеси

Крайне нежелательными элементами, которые очень негативно сказываются на качестве стали, являются мышьяк, олово, сурьма. Их появление в сплаве всегда приводит к тому, сталь становится очень хрупкой по границам своих зерен, что особенно заметно при смотке стальных лент и в процессе отжига низкоуглеродистых марок сталей.

Заключение

В наше время влияние легирующих элементов на свойства стали довольно хорошо изучено. Специалисты тщательно провели анализ воздействия каждой добавки в сплаве.

Полученные теоретические знания позволяют металлургам уже на этапе оформления заказа сформировать принципиальную схему выплавки стали, определиться с технологией и количеством требуемых расходных материалов (руды, концентрата, окатышей, присадок и прочего).

Наиболее часто сталеплавильщики использую хром, ванадий, кобальт и другие легирующие элементы, которые являются достаточно дорогостоящими.

Источник: https://FB.ru/article/288755/vliyanie-legiruyuschih-elementov-na-svoystva-stali-vidyi-marki-i-naznachenie-staley

Состав и применение легированной стали

[Легированная сталь] представляет собой материал, физические и химические свойства которого улучшаются за счет добавления легирующих элементов в состав.

Она отличается прочностью, меньше поддается коррозии, применяется в различных областях, в том числе, машиностроении, а также для создания различных конструкций, трубы различного назначения, деталей, которые в дальнейшем будут подвергаться высоким температурным колебаниям.

Химический состав

Качество стали зависит от количества в ней углерода, который является одним из основных элементов, входящих в состав. Еще одним обязательным элементом является железо.

Хром, никель, ванадий, медь и пр. элементы добавляются для улучшения свойств материала.

Рассмотрим подробнее влияние легирующих элементов на свойства стали:

  • Никель – позволяет сделать материал не только прочным, но и пластичным. Именно этот элемент, входящий в состав, отвечает за стойкость к коррозии;
  • Хром – также отвечает за устойчивость к коррозии, благодаря ему получается нержавеющая сталь, делает ее твердой и прочной;
  • Ванадий – благодаря этому элементу структура стали становится мелкозернистой, плотной;
  • Медь – помимо стойкости к коррозии противодействует кислотам;
  • Вольфрам – позволяет материалу оставаться твердым при увеличении температуры (нагреве);
  • Марганец, входящий в состав, отвечает за износостойкость;
  • Кремний – делает металл упругим, отвечает за магнетизм;
  • Если в состав входит алюминий, то он позволяет становиться материалу жаростойким.

Что происходит со структурой, когда добавляются различные примеси? При их введении кристаллическая решетка рушится за счет различия в формах электронов, а также атомных величин. Характеристики стали могут меняться в зависимости от состава.

В состав могут входить две, три и более примесей. Это зависит от того, какой конечный продукт нужно получить.

В состав могут также входить титан, кобальт, молибден, отвечающие за прочность, твердость и пластичность материала, который приобретает все перечисленные свойства в основном после того, как будет пройдена термообработка.

Разновидности металла

Различают углеродистые и легированные стали. Рассмотрим различие.

Углеродистая сталь представляет собой сплав, в состав которого помимо железа и углерода, вводятся кремний с марганцем. Сера и фосфор, входящие также в состав, считаются вредными примесями, которые снижают механические свойства.

От количества углерода такая сталь подразделяется на высоко-, средне- и низкоуглеродистую. Чем больше состав оснащен углеродом, тем тверже и менее пластичным будет конечный продукт.

ВАЖНО ЗНАТЬ:  Как сделать гравировку по металлу своими руками?

Углеродистая сталь в свою очередь делится на конструкционные и инструментальные виды. Конструкционная сталь находит свое применение в создании металлических конструкций, трубы, арматуры для железобетона и прочих строительных материалов.

Инструментальные виды – после закаливания становятся более твердыми, но хрупкими, их обработка требует осторожности (ГОСТ 1435-54).

Сталь также бывает конструкционная, инструментальные виды и добавляется еще один вид с особыми химическими свойствами (по ГОСТ).

Конструкционная легированная сталь также используется в машиностроении и строительстве, однако в нее входят легирующие примеси, позволяющие улучшить свойства материала, из которого будут сделаны конструкции, трубы и прочие строительные материалы.

Химический состав легированного металла может различаться, исходя из этого, ниже представлена классификация:

  1. Низколегированная – состав легированных добавок не превышает 2,5%. Конструкционная сталь представлена в ГОСТ 5958-57 (в зависимости от состава);
  2. Среднелегированная – добавки, входящие в состав, находятся в диапазоне 2,5-10%;
  3. Высоколегированная  – процент примесей, входящих в состав, превышают 10% (до 50%).

Также классификация подразделяется на жаропрочную (более 1000 градусов), коррозино-устойчивую, по химическому распаду на жароустойчивую и окалиноустойчивую (при 550 градусах).

Следует отметить, что классификация ГОСТ распространяется на свойства, а также на область применения.

Маркировка металла

О чем говорит маркировка легированных сталей? Маркировка согласно ГОСТ рассказывает следующее: буква означает название химического элемента, а цифра, которая находится после нее, указывает на процентное содержание данной примеси.

Если за буквой не располагается никакой цифры, то следовательно, процент содержания этого элемента маленький, не превышает значения 1%.

Сколько содержится углерода в стали можно понять по первым двум цифрам, обозначается также в процентах, но в сотых долях. Если вместо двух стоит одна цифра, то значит, процентное содержание указывается не в сотых, а в десятых.

Классификация и обозначение марок по химическому составу:

Еще в СССР был разработан ГОСТ, по которому была принята данная система маркировки. Примечательно то, что она до сих пор остается актуальной.

Следует отметить, что классификация и обозначение химических элементов буквами не всегда соответствует начальной букве их названия: марганец (г), хром (х), никель (н), медь (д), ванадий (ф), вольфрам (в), алюминий (ю), азот (а) и пр.

Если в середине маркировки стоит буква «А», обозначающая азот, то значит, она показывает содержание азота.

Если буква «А» стоит в конце, то следовательно, сера и фосфор содержатся в незначительном количестве (меньше 0,03%), такая сталь считается чистой.

Удвоенная буква «А» на конце говорит об особо чистом материале от содержания названных выше элементов. Определение количества серы также происходит согласно ГОСТ.

ВАЖНО ЗНАТЬ:  Как фосфатировать металл в домашних условиях?

Также в начале маркировки можно встретить дополнительное обозначение: быстрорежущая сталь обозначается буквой «Р», шарикоподшипниковая – «Ш», автоматная – «А», электротехническую обозначают буквой «Э», буква «Л» говорит о том, что сталь получена литьем.

Например, маркировка стали: 18ХГТ – содержание углерода составляет 0,18%, содержит хром, марганец и титан.

Применение металла

Как уже было сказано ранее, легированная сталь обладает рядом свойств, обеспечивающих ее широкое применение. Она позволяет изделию увеличивать срок эксплуатации, обеспечить его надежность и даже в каком-то роде экономить.

Применение легированных сталей можно встретить в различных областях, не только в машиностроении и строительстве, но и в хирургии (оборудование), производстве трубы различного назначения, а также из нее делаются даже ножи, которые долго остаются наточенными.

Область применения напрямую зависит от состава элементов, от того, какая термическая обработка была применена и др. Ранее была рассмотрена классификация по назначению (по ГОСТ): конструкционные, инструментальные и с особыми свойствами.

Машинные детали, а также различные конструкции чаще изготавливают из перлитных сталей.

Низколегированные материалы отличаются хорошей свариваемостью, поэтому применяются для создания конструкций, также из них делаются трубы.

Легированные инструментальные разновидности стали используются в создании деталей, предназначенных для работы под давлением (например, Х12МФ). При изготовлении резцов, сверл и фрез используются также инструментальные виды стали.

Согласно ГОСТ 5950-2000, легированный материал нашел свое применение в создании скальпелей и ножей, ленточных пил, штемпелей, матриц, зубонакатников и проч. В этом ГОСТе указано обозначение стали и сфера ее применения.

Нержавеющая сталь, в состав которой входит хром (в большом количестве), используется в создании трубы и трубопроводов.

Такие трубы отличаются устойчивостью к ржавчине, а также стойкостью к перепадам температур.

Сваривание легированных сталей

Сварка легированных сталей и их обработка должна производиться с учетом некоторых моментов, например, некоторые элементы начинают выгорать, металл в местах сварки начинает самозакаливаться, карбиды при этом выделяются, а также могут появляться трещины из-за низкого уровня теплопроводности.

Кстати, показатель теплопроводности у углеродной стали выше, чем у легированной.

Процесс сварки должен протекать правильно, исключая вышеописанные явления.

ВАЖНО ЗНАТЬ:  Технология пескоструйной обработки и очистки металла

Для этого в обязательном порядке соблюдается температурный режим, таким образом, исключается возможность перегрева конструкции, флюсы различного состава также должны применяться.

Качество сварки, в первую очередь, зависит от содержания углерода: чем ниже этот показатель, тем лучше качество сварки.

Хромистая нержавеющая сталь при сварке имеет свои особенности: за счет низкого содержания углерода процесс сварки протекает хорошо.

Чтобы нержавеющая хромированная сталь не выгорала, используют защиту поверхности будущего изделия, а также электроды, которые содержат хром.

Металл для восстановления вязкости желательно перед самим процессом нагреть (до 300 градусов), а после сварки сделать отжиг шва (до 800 градусов). При этом лучше использовать электрическую дугу.

Важным моментом является то, что термическая обработка легированной стали хромом должна осуществляться при высокой температуре. Температура напрямую зависит от количества этого элемента: чем его больше, тем выше должна быть температура термообработки.

Нержавеющая хромоникелевая сталь при высокой температуре термообработки теряет карбиды хрома, из-за этого в швах снижается способность стали противостоять коррозии, что не подходит для эксплуатации многих металлический конструкций, и различных видов трубы.

Для обеспечения сохранности нержавеющих свойств вводится ниобий или титан. Отжиг, обработка и закаливание (охлаждение) шва позволят обеспечить устойчивость к ржавлению.

Швы марганцовистого металла могут потрескаться в процессе сварки. Чтобы этого избежать, сварка осуществляется электродами, состав которых не отличается от состава свариваемого металла.

Сварка и обработка должна производиться быстро, а швы по окончанию – охлаждаться.

Чтобы качество сварки получилось «на уровне», необходимо сделать предварительную чистку, поверхности. Все окалины, шлаки, смазка должны быть устранены.

Необходимо чистить не только поверхность предполагаемого шва, но и площадь рядом с ним (около 10 см).

Сварка или иначе — термическая обработка легированной стали должна происходить без перерывов и очень быстро.

Если материал предрасположен к образованию трещин, то тогда сварка (термическая обработка) должна производиться в закрытом помещении, температурным пределом является минусовой показатель в 40 градусов.

Сила тока должна быть постоянной, на поверхности материала не должен образоваться конденсат, иней или лежать снег. Лучше доверить этот процесс специалистам.

Источник: https://rezhemmetall.ru/legirovannaya-stal.html

Понравилась статья? Поделиться с друзьями:
Металлы и их обработка
-- Сайдб лев (липк) -->
Как сделать горн для ковки

Закрыть
Для любых предложений по сайту: [email protected]