Для чего легируют стали ответ
Высоколегированные стали обладают рядом уникальных характеристик и свойств, благодаря чему сфера применения этих материалов столь широка. Готовой продукции характерны следующие эксплуатационные параметры: прочность, пластичность, деформационная и коррозионная стойкость.
В сравнении с углеродистыми сталями легированные обладают большей пластичностью. Все легированные сплавы обладают пригодностью к сварке и свойствами свариваемости. Машиностроительные материалы также обладают немагнитностью, тепловой закаленностью, упругостью. Высокая прочность достигается путем термической обработки обрабатываемого состава.
Классификация
Легированная сталь — это железоуглеродистый сплав, в состав которого кроме рядовых компонентов введены специальные примеси для изменения основных физических или механических свойств готового продукта металлургии. Вводимые в сплав элементы называют легирующими. Чаще всего используют такие элементы как никель, ванадий, медь, хром и многие другие.
В зависимости от процентного содержания легирующих добавок различают следующие виды стали:
- Низколегированную (в состав входит до 2,5 % легирующих компонентов);
- Среднелегированную (добавок от 2,5 до 10 %);
- Высоколегированную (свыше 10 до 50 %).
Различают несколько видов высоколегированных сталей и их сплавов, каждый из которых подходят только для определенных условий эксплуатации. По свойствам различают два основных вида сталей:
- Коррозионно-стойкие;
- Жаропрочные, жаростойкие.
В зависимости от того какого легирующего компонента больше, различают следующие виды сталей:
- Хромистые;
- Хромоникелевые;
- Хромомарганцевые.
Основная сфера применения
Высоколегированная сталь и ее сплавы — важные материалы. Их широко применяют в разных сферах человеческой деятельности.
Наибольший спрос в нефтяной промышленности, энергетическом машиностроении, для химической индустрии, а также для изготовления специальных конструкций, которые работают в условиях агрессивной среды (широкий разбег рабочей температуры и ее перепады).
Высоколегированная сталь в некоторых направлениях применяется как хладостойкий элемент. При легировании удается добиться определенных механических свойств.
Наибольшим спросом пользуются аустенитные высоколегированные стали. Это сплав на основе железа, легированный до 55%. В состав также входят два основных компонента: никель (не более 8%) и хром (содержание 18%). Подбор легирующих компонентов для такого сплава определяет его служебное предназначение и ключевые свойства.
Для газовой среды и условий эксплуатации продукта в щелочных кислотах применяют коррозионно-стойкие легированные стали. Характерное отличие — это сниженное содержание углерода в основном составе — всего 0,12%. При дальнейшем легировании и специальной термической обработке получают стойкий сплав, способный противостоять разрушающему действию жидкометаллической или газовой среде.
Стали с содержанием молибдена или вольфрама по 7% (компоненты относятся к группе упрочнителей), а также бора (присадка позволяет измельчать зерна) могут эксплуатироваться длительное время в средах с высокими температурами до 1100 градусов. Для специальных условий сплав легируется алюминием или кремнием, что повышает окалиностойкость продукта. Элементы могут применяться в печах или в качестве нагревательных элементов.
ООО Промэкс произведет комплекс у слуг по обработке высоколегированной стали:
Легированные стали используют для изготовления тяжелонагруженных деталей ответственного назначения, так как они обладают значительно более высокими механическими характеристиками. При легировании у стали можно получать заданные свойства, в том числе отсутствующие у углеродистых сталей (например, коррозионную стойкость, жаропрочность).
Легированные стали обладают более глубокой прокаливаемостью деталей тех же размеров, чем из углеродистых сталей. Многие их марки прокаливаются насквозь даже при больших сечениях деталей. Чем больше в стали легирующих элементов (до определенной концентрации), тем выше ее прокаливаемость. Большинство легирующих элементов снижают температуру мартенситного превращения и улучшают качество остаточного аустенита в структуре.
В зависимости от суммарного содержания легирующих элементов стали делятся на низколегированные (содержание легирующих элементов до 2.5%), среднелегированные (от 2.5 до 10%) и высоколегированные (свыше 10%).
В легированных сталях Fe должно быть не менее 50%, при меньшем количестве Fe получаются сплавы с особыми свойствами. Стали считаются легированными, если они содержат Si более 0.8% и Mn более 1%.
По назначению легированные стали делятся на конструкционные, инструментальные, стали и сплавы с особыми свойствами.
В конструкционные легированные стали для улучшения их служебных свойств вводят такие химические элементы, как Cr, Ni, W, Mo, V, B и другие, а также Mn и Si в количествах, превышающих их обычное содержание в углеродистых сталях.
ГОСТом предусмотрены следующие буквенные обозначения легирующих элементов, входящих в состав сталей: Mn – Г, Si – С, Cr- Х, Ni — Н, Mo — М, W- В, V- Ф, Al — Ю, Ti — Т, B — Р, Cu — Д, Nb — Б. Эти буквы, сочетаясь с цифрами, указывают на состав легированной стали, например: 45Х, 12ХН3А, ХВ5, 9ХС. Цифры, стоящие перед буквами, указывают на содержание углерода в сотых долях процента, — если две цифры и в десятых долях процента, — если одна цифра.
Отсутствие впереди букв цифр означает, что сталь содержит углерода 1% и больше. Цифры, стоящие за буквами, указывают на среднее содержание данного легирующего элемента в процентах. Отсутствие за буквой цифры означает, что данного элемента содержится до 1%. Стоящая в конце маркировки буква А свидетельствует о высококачественной стали, с пониженным содержанием S и P (менее0.02% каждого).
Например, марка 12Х2Н4А обозначает, что это хромоникелевая высококачественная сталь с содержанием углерода 0.12%, Cr – 2%, Ni – 4%.
Из 90 стандартных марок конструкционных легированных сталей большинство являются среднеуглеродистыми (0.25-0.45% углерода). Используют их после улучшения свойств путем закалки и отпуска, поэтому называют улучшенными.
Наиболее распространенные среди них являются стали: хромистые (30Х, 38Х, 40Х, 45Х, 50Х), марганцевые (30Г, 35Г, 40Г, 45Г, 35Г2, 40Г2), кремнистые (55С2, 60С2), хромоникелевые (30ХН3А, 40ХН, 45ХН), хромокремнистые (33ХС, 38ХС), хромомарганцевые (35ХГ2, 4ХГ), хромомарганцевокремнистые (30ХГС, 30ХГСА, 35ХГСА).
Эти стали используются в производстве нагруженных и сильнонагруженных деталей машин.
Конструкционные легированные стали в сравнении с углеродистыми обладают более высокими вязкостно-прочностными свойствами.
Это объясняется тем, что: 1) все они (кроме марганцевых сталей) имеют мелкозернистую структуру; 2) глубже прокаливаются; 3) закаливаются не в воде, а в масле (а некоторые на воздухе), благодаря чему у них образуется очень малые закалочные напряжения, и поэтому они имеют более высокие пластичность и вязкость; 4) при их отпуске требуется более высокая температура и время выдержки, чем для углеродистых сталей, вследствие чего в них полнее снимаются закалочные напряжения и вязкость оказывается выше.
Источник: https://MyTooling.ru/instrumenty/dlja-chego-legirujut-stali-otvet
Методы сварки легированных сталей
Легирование сталей проводится для получения особых свойств, которые позволяют применять материал в различных экстремальных для обычных сталей условиях.
Сварка легированных сталей имеет свою специфику, потому что требуется не только получить необходимую физико-механическую надежность соединения шва, но и сохранить в нем характеристики основного сплава.
Свойства материала
По количеству специально вводимых примесей легированные (облагороженные) стали подразделяются на:
- низколегированные;
- среднелегированные;
- сильнолегированные.
В низколегированных конструкционных сталях количество специально введенных примесей не превышает 2,5%. В среднелегированных оно доходит до 10%, в высоколегированных сплавах примесей более 10%.
Легирующими добавками чаще всего выступают хром, никель, молибден, марганец, вольфрам, алюминий, кобальт, ванадий, азот, бор, титан, кремний, ниобий. Легируют сплавы для получения высоких механических и прочих свойств.
Низколегированные
В низколегированных и малоуглеродистых сплавах присутствие углерода составляет меньше 0,18 %. Они обладают пластичностью, неплохой свариваемостью, и они нехрупкие.
Стали 14Г2, 15ГС являются низколегированными сталями. Высокие потребительские качества достигаются за счет применения марганца, хрома, никеля, кремния и закалки сплава. Добавки обеспечивают повышенную стойкость к коррозии.
Характеристики
Главными характеристиками качества сварки является резистивность свариваемых швов холодным трещинам, из-за хрупкости. Такие сплавы имеют малый процент углерода, никеля, кремния. При правильном режиме сварки и пир использовании требуемых присадок горячих трещин не будет.
Для каждого вида низколегированной стали имеются максимально допустимая и минимально допустимая скорость охлаждения сплава вокруг шва. В зависимости от этих пределов и выбирается диапазон выполнения сварочных работ. От этого зависит и величина предварительного подогрева заготовок.
При соблюдении пределов скорости охлаждения вокруг шва холодных трещин образовываться не будет.
Технология
Для ручной электрической сварки легированных сталей с 2,5% примесей применяются электроды Э70 и подобные ему с фтористо-кальциевым флюсом. Сила тока определяется толщиной металла, электрода, его маркой.
Сварка должна проходить без остановок. Перед следующим проходом температура сварочного шва и всего изделия должна быть выше температуры предварительного прогрева (более 200 °C).
При использовании флюса сталь варят постоянным током. Ток должен находиться в пределах 800 А, а напряжение 40 В. Скорость сварки должна находиться в диапазоне 13-30 м/час.
При стыковой сварке во избежание чрезмерной прочности сварного шва для его заполнения используют Св-08ХН2М. При сваривании заготовка должна лежать на флюсовой подушке, если применяется сваривание в один проход.
При сваривании низколегированных сплавов в инертной газовой среде применяются различные материалы. При работе в углекислоте используют проволоку Св-08Г2С, Св-10ХГ2СМА.
При работе с аргоном применяют марку Св-08ХН2ГМЮ. Она повышает механическую прочность швов и их стойкость на морозе. Ее советуют использовать для сварки угловых соединений.
При использовании газовой сварки для легированной стали из-за сильного длительного разогрева околошовной зоны свариваемой детали происходит выгорание легирующих металлов, что снижает коррозионную стойкость шва, его надежность.
Чтобы уменьшить отрицательное действие длительного перегрева для восстановления концентрации легирующих металлов в сварном шве применяется присадочная проволока СВ-10Г2, Св-18ХГС и им подобных.
После завершения процесса сварки для увеличения механической прочности шва его проковывают при температуре 800-850 ⁰C, затем нормализуют.
Среднелегированные
Среднелегированные стали в основном легируются никелем, хромом, молибденом, ванадием, содержание углерода превышает 0,4%. После закалки сталь становится прочной, вязкой и пластичной. Среднелегированные стали марок ХВГ, ХВСГ, 9ХС широко используются при изготовлении сверл.
Эти сплавы изготавливают из чистой шихты. Ее очищают от серы, фосфора и других вредных включений. При необходимости применяют электрошлаковую переплавку, рафинируют с искусственными шлаками.
В результате получается сталь с прекрасными физико-механическими характеристиками. Для дополнительного повышения характеристик сплавов среднелегированную сталь подвергают закалке и ковке.
Обеспечение качества шва
Для обеспечения необходимого качества сварных швов, нужно выбирать сварочные материалы с таким расчетом, чтобы после сварки получался шов близкий по физикомеханическим качествам к свариваемому материалу.
Так как в процессе сварки участвует основной металл изделия, то применяемые сварочные материалы должны иметь количество легирующих примесей немного меньше, чем в основном металле. Это позволяет добиться необходимого уровня прочности и пластичности шва.
Когда свариваются высокопрочные среднелегированные стали с глубокой прокалкой, то необходимо выбирать такие сварочные материалы, которые минимизируют наличие водорода в сварочной зоне.
Это могут обеспечить низколегированные электроды, у которых в покрытии отсутствуют органические материалы, и которые перед использованием подвергаются высокотемпературной прокалке.
Кроме этого, при сварочных работах нужно избавиться от влаги, ржавчины и других веществ, которые могут насытить сварочную ванну водородом.
Электроды
При сварке среднелегированных сталей применяют электроды Э-13Х25Н18, Э-08Х21Н10Г6 и проволоку Св-08Х20Н9Г7Т и Св-08Х21Н10Г6.
При использовании аргонодуговой сварки с неплавящимся электродом можно получить хорошее качество сварных швов среднелегированных сталей.
Применение активирующих флюсов увеличивает глубину сварочной ванны. При автоматизированной сварке получается равномерная глубина проплавления металла. Для активирующих флюсов используют самый стойкий вольфрам.
Газосварка для среднелегированных металлов применяется с использованием ацетиленокислорода. Он дает качественный шов, но все же предпочтительней использование электросварки.
Высоколегированные
Высоколегированные сплавы, кроме других примесей, обычно содержат не менее 16% хрома и не менее 7% никеля. Благодаря этим и другим добавкам высоколегированные сплавы обладают высокой стойкостью к низким температурам, коррозии и высоким температурам.
Но каждая марка имеет свою специализацию, в которой она обладает предельными характеристиками. По назначению высоколегированные стали можно разделить на жаростойкие, жаропрочные и коррозионностойкие.
После термообработки они повышают свою прочность и пластичность. При закалке пластичные свойства у них улучшаются.
Специфичность
Высоколегированные сплавы имеют настолько выдающиеся характеристики, что их применяют везде, где позволяет это сделать целесообразность и цена продукта.
Но в каждом конкретном изделии требования к ним разные. Соответственно, при проведении сварочных работ к сварным швам предъявляются разные требования по прочности и пластичности, что приводит к разным подходам в сварочных работах. То есть здесь все индивидуально.
Наличие большого количества подходов в сварке высоколегированных сталей связано с тем, что они обладают очень специфичными теплофизическими свойствами.
Они имеют низкий коэффициент теплопроводности и высокий коэффициент теплового расширения. В сочетании они предъявляют к процессу сварки противоречивые требования.
Низкая теплопроводность приводит к увеличению глубины проплавления стали. А высокий коэффициент температурного расширения вызывает деформации вплоть до коробления деталей. Для уменьшения коробления необходимо максимально сконцентрировать тепловую энергию. С этим хорошо справляется лазерная сварка.
При ручной электросварке высоколегированных сплавов проводятся те же мероприятия, что и при сварке среднелегированных сплавов. задача минимизировать попадание водорода в сварочную зону, иначе это вызывает появление пор и трещин.
Выбор технологи
Для высоколегированных сплавов применять газовую сварку не рекомендуется для кислотостойких сталей, так как она вызывает межкристаллитную коррозию. Даже при использовании в сварке жаропрочных сталей происходит коробление изделий.
Сварка под флюсом по сравнению с ручной электродуговой имеет большие плюсы благодаря тому, что процесс сварки происходит под защитой в постоянной среде с одинаковыми компонентами. Нет необходимости менять электроды, что вызывает образование кратеров.
Сварка под флюсом обеспечивает равномерный шов с заданными характеристиками благодаря защите сварочной ванны от воздействия внешней среды в виде водорода.
Кроме этого уменьшаются предварительные работы, так как разделка кромок нужна только при толщине более 12 мм, а ручная дуговая сварка требует разделку кромок производить при толщине металла более 5 мм.
Наиболее эффективной для легированных сталей является лазерная сварка благодаря высокой концентрации энергии на маленькой площади. Это позволяет практически устранить коробление и деформации. Многие легированные сплавы, можно сваривать между собой независимо от вида только при использовании лазерной сварки.
Источник: https://svaring.com/welding/soedinenie/svarka-legirovannyh-stalej
Легирование стали: классификация и описание процесса | мк-союз.рф
Легировать сталь научились ещё в XIX веке – учёный Мюшетт изобрёл состав стали, содержащий 1,85% углерода, 9% вольфрама и 2,5% марганца, она использовалась для получения резцов, применяемых в металлорежущих станках.
Сталь для массового производства появилась благодаря разработкам английского металлурга Роберта Гадфильда. Легирование стали позволило получить состав: 1,0–1,5% углерода и 12–14% марганца, она отличалась повышенной износостойкостью и хорошим качеством литья. Эта марка практически без изменений сохранилась до наших дней.
Легированная сталь обладает большей прочностью, коррозионной стойкостью и пластичностью.
Виды легированных сталей
Стали имеют определённую классификацию в зависимости от структуры и области применения.
По структуре делятся на классы:
- мартенситный (основная структура металла),
- мартенситно-ферритный (структура содержит мартенсит + 10% феррита),
- ферритный,
- аустенитно-мартенситный (стали с комбинированной структурой аустенита и мартенсита, количество которых можно менять в больших пределах),
- аустенитно-ферритный (структура: аустенит с содержанием феррита более 10%),
- аустенитный (устойчивая структура аустенита).
По процентному соотношению легирующих добавок сталь подразделяют на:
- низколегированную – 5–10%,
- среднелегированную – 10%,
- высоколегированную – более 10%.
Дополнительная классификация
Легированные конструкционные сплавы подходят для изготовления деталей машин и механизмов в машиностроительной отрасли – производят крупногабаритные детали, которые закаляют и подвергают высокому отпуску. Большая часть легирующих добавок в стали повышают прокаливаемость. Внедрение добавок должно быть достаточным, но не чрезмерным. Большая степень легирования может вызвать:
- снижение пластических свойств,
- развитие отпускной хрупкости,
- снижение порога хладноломкости.
Исключение – никель, он смещает порог хладноломкости в область низких температур, поэтому для машин, работающих в условиях Севера, механизмы изготавливают из никельсодержащих сталей. Пружинная легированная сталь содержит 0,5–0,7% углерода, а в качестве добавок вводят хром, молибден и вольфрам. Такой состав должен обеспечивать высокое сопротивление малым пластическим деформациям и высокой усталостной стойкости.
Шарикоподшипниковые – относят к заэвтектоидным – углерод около 1% с дополнительным легированием металла хромом (1,3–1,65%). В теплостойких подшипниках хром увеличивают до 5%. К подшипниковым – предъявляют особые требования по металлургической чистоте. Применение рафинирующих переплавов, вакуумные способы переплавки, обработка синтетическими шлаками позволяют уменьшить долю и размер неметаллических включений, тем самым повышают сопротивление контактной усталости.
Инструментальные виды
Легированная инструментальная сталь предназначается для производства металлорежущего инструмента, эксплуатируемого при режимах с высокой скоростью резания и для изготовления штампового инструмента.
Быстрорежущие стали способны сохранять высокую твёрдость и износостойкость режущей кромки инструмента. В такую сталь добавляют молибден, ванадий, вольфрам, хром и кобальт.
Штамповые стали для холодной деформации с содержанием 1,0–2,0% углерода обладают износостойкостью и ударной вязкостью. Их легируют хромом до 12%, ванадием, вольфрамом, молибденом.
Штамповые стали для горячей деформации содержат углерод в пределах 0,3–0,5%, обладают высокой теплостойкостью, ударной вязкостью, сопротивлением термической усталости. В качестве добавок вводят вольфрам, молибден, ванадий.
Основные цели легирования
Слово «легирование» происходит от немецкого «legieren» (связывать, соединять). Положительное воздействие легирующих компонентов на свойства стали связано с обеспечиванием протекания двух физико-химических процессов.
Процесс №1
Образование термодинамических устойчивых растворов замещения, сопровождающееся замещением части атомов (ионов) железа в его кристаллической решётке (ионами) легирующего элемента. Это ведёт к искажению кристаллической решётки железа, поскольку радиусы ионов (катионов) легирующих элементов отличаются от радиуса катионов железа, что повышает твёрдость и прочность железа с сохранением его пластичности.
Процесс №2
Возникновение прочных и практически нерастворимых в жидком железе химических соединений между введёнными в расплавленный металл легирующими добавками и растворёнными в нём неметаллами (кислород, азот, сера, углерод и др.).
Результатами образования таких соединений являются:
- снижение остаточного содержания в расплавленном металле растворенных неметаллов, ухудшающих его качество,
- уменьшение общего объёма вредных примесей (растворённых и в виде неметаллических включений) в стали.
А также происходит выделение (выпадение) из жидкого металла таких мелких неметаллических включений, которые служат центрами кристаллизации и приводят к получению мелкозернистой первичной и вторичной структуры стали.
Благодаря этому она имеет лучшую пластичность, малую анизотропность свойств после прокатки и т. д.
Выделяющиеся во время кристаллизации мелкие неметаллические включения обладают склонностью скапливаться на поверхности растущих кристаллов, понижая скорость роста граней, а это, в свою очередь, уменьшает зернистость стали.
Процесс легирования
Основным способом легировать сталь является метод объёмного металлургического легирования. Заключается в сплавлении основного элемента с легирующими в печах разного вида (индукционные, вакуумно-дуговые, тигельные, конвертеры, дуговые, плазменные, и др.). При этом способе возможна существенная потеря активных веществ (марганца, хрома, молибдена, и др.).
Существуют также:
- механическое легирование,
- восстановление,
- электролиз,
- плазмохимическая реакция.
Механическое легирование выполняют в аттриторах – барабанах, в центре которых находится вал с кулачками. В них закладывают порошкообразные компоненты для получения нужного сплава. Во время вращения кулачки «ударяют» по смеси, и происходит «вбивание» легирующих добавок в основу.
При совместном восстановлении перемешивают оксиды элементов сплава с восстановителем, например, с гидридом кальция (СаН2) и производят нагрев. Идёт реакция восстановления оксидов до металлов, синхронно происходит процесс диффузии, выравнивающий состав сплава. Полученный оксид кальция (СаО) промывают водой, а сплав (в виде порошка) идёт в следующую обработку. Металлотермическое восстановление подразумевает использование металлов (магния, кальция, алюминия и др.) в качестве восстановителей.
С помощью поверхностного легирования поверхности изделия придают особые свойства. На верхний слой наносится определённый элемент или сплав в виде небольшого пласта, затем на неё воздействуют с помощью энергии (лазерного излучения, плазмы, тока высокой частоты др.) — поверхность оплавляется, и на ней формируется новый сплав.
Разница между легированием и примесями
Обычные легирующие добавки — это компоненты, которые вводят в металл в значительных количествах — более 0,10%. Они вызывают изменение кристаллической решётки железа, образуя растворы внедрения, повышают прочностные и других свойства железа (матрицы).
В качестве металлов для легирования используют:
- хром Cr,
- марганец Mn,
- никель Ni,
- алюминий Al,
- молибден Mo,
- кобальт Co,
- титан Ti,
- цирконий Zr,
- медь Cu и другие.
Их внедряют в сталь в разных количествах и сочетаниях.
Примеси
Существует деление вредных примесей на обычные и остаточные. К обычным вредным примесям относят те, содержание которых в металле можно уменьшить во время плавки – это фосфор, сера, кислород, азот, углерод, т. е., неметаллы.
Под остаточными вредными примесями принято понимать такие, содержание которых невозможно снизить во время плавки ни при окислительном рафинировании, ни при обычном легировании. Это характерно для химических элементов, имеющих растворимость в жидком железе. В производственной практике обычно встречающимися вредными остаточными примесями являются:
- медь,
- никель,
- олово,
- сурьма,
- мышьяк.
Маркировка легированных сталей
В России и СНГ действует система обозначения марок, состоящая из букв и цифр.
Обозначения конструкционных легированных сплавов
Маркировка такой стали состоит из цифр и букв. Буквы – это основные легирующие добавки, цифры после каждой из букв показывают содержание обозначенного элемента, округлённого до целого числа (если содержание легирующего компонента – до 1,5%, то цифра за буквой не пишется). углерода в процентах, умноженное на 100, пишется в начале наименования стали.
Маркировка основных легирующих компонентов:
Элемент | Обозначение |
Никель | Н |
Кобальт | К |
Молибден | М |
Хром | Х |
Марганец | Г |
Бор | Р |
Медь | Д |
Цирконий | Ц |
Фосфор | П |
Кремний | С |
Ниобий | Б |
Вольфрам | В |
Титан | Т |
Азот | А (в середине наименования) |
Ванадий | Ф |
Алюминий | Ю |
Редкоземельные металлы | Ч |
Если сталь с ограничением содержанием серы S и фосфора P <,0,03% и является высококачественной, в конце маркировки указывают «А». Высококачественные стали, полученные электрошлаковым переплавом, имеют маркировку в конце наименования с буквой «Ш» через тире, например, 18ХГ-Ш.
Обозначения автоматных
В начале названия указывается буква «А». Если в качестве легирующей добавки идёт свинец, то маркировка будет начинаться с «АС». Для отображения других элементов, действует тот же порядок, что и для конструкционных легированных сталей.
Маркировка подшипниковых
Маркировка у них, как у легированных, только с «Ш» в начале. У стали, полученной электрошлаковым переплавом, добавляют «Ш» в окончании названия через тире. Например, ШХ8-Ш.
Обозначения инструментальных легированных
Маркируются аналогично конструкционным легированным сталям. Процентное содержание углерода указывается в начале маркировки, но отличается тем, что умножается не на 100, а на 10. Если содержание углерода менее 1%, то цифру в начале названия марки стали не указывают.
Маркировка быстрорежущих
Они маркируются в начале наименования буквой «Р» и цифрой, указывающей на содержание вольфрама в стали, затем следуют буквы и цифры других легирующих элементов.
Маркировка коррозионно-стойких
Коррозионно-стойкие (нержавеющие), жаростойкие и жаропрочные имеют в обозначении цифры и записываются так же, как маркировка конструкционных легированных сталей. У литейных добавляется «Л».
Источник: https://xn----ntbhhmr6g.xn--p1ai/metallyi/osobennosti-legirovaniya-stali
Для чего в сталь вводятся легирующие элементы
- Характеристика
- Свойства
- Марки
В современном мире имеется большое количество разновидностей стали. Это один из самых востребованных материалов, который используется практически во всех отраслях промышленности.
Характеристика легированных сталей
Легированная сталь представляет собой сталь, которая кроме обычных примесей оснащена еще и дополнительными добавочными веществами, которые необходимы для того, чтобы она соответствовала тем или иным химическим и физическим требованиям.
Обычная сталь состоит из железа, углерода и примесей, без которых невозможно себе представить данный материал. В легированную сталь добавляются дополнительные вещества, которые получили название легирующих. Они используются для того, чтобы сталь стала обладать такими свойствами, которые необходимы в тех или иных ситуациях.
В большинстве случаев в качестве легирующих элементов к железу, примесям и углероду добавляются: никель, ниобий, хром, марганец, кремний, ванадий, вольфрам, азот, медь, кобальт. Также не редко в таком материале отмечаются такие вещества, как молибден и алюминий. Для придания прочности материалу в большинстве случаев добавляется титан.
Такой вид стали имеет три основные категории. Отношение легированной стали к той или иной группе обусловлено тем, сколько в ней содержится стали и примесей, а также легированных добавок.
Виды легированной стали
Есть три основных вида стали с легирующими элементами:
Она характеризуется тем, что в ней содержится около двух с половиной процентов легирующих дополнительных элементов.
- Среднелегированная сталь.
Данный материал имеет в своем составе от 2.5 до 10 процентов легирующих дополнительных веществ.
- Высоколегированная сталь.
К данному виду относятся стальные материалы, количество легирующих добавок в которых превышает десяти процентов. Количество этих компонентов в такой стали может достигать пятидесяти процентов.
Назначение легированной стали
Легированную сталь широко применяют в современной промышленности. Она обладает высоким уровнем прочности, что позволяет изготовлять из нее оборудование для резки и рубки металлического проката самых разных видов.
По своему назначению стали легированного типа могут быть представлены большим количеством групп.
Основными из них являются:
- конструкционная легированная сталь,
- инструментальная легированная сталь,
- легированная сталь с особыми химическими и физическими свойствами.
Характеристики легированных сталей могут быть разнообразными. Они их приобретают благодаря соотношению основных элементов. Стали такого типа являются в любом случае более прочными и устойчивыми к образованию коррозии.
Свойства легированной стали
Свойства легированных сталей являются разнообразными. Они главным образом определяются теми добавками, которые применяются в качестве легирующих при производстве отдельных видов стальных материалов.
В зависимости от добавленных легирующих компонентов сталь приобретает следующие качества:
- Прочность. Данное свойство приобретает после добавления в ее состав хрома, марганца, титана, вольфрама.
- Устойчивость к образованию коррозии. Это качество появляется под воздействием хрома, молибден.
- Твердость. Сталь становится боле твердой благодаря хрому, марганцу и другим элементам.
Внимание: Стоит отметить, что для того, чтобы легированная сталь была более прочной и устойчивой к внешнему влиянию окружающей среды необходимое содержание хрома не должно быть менее двенадцати процентов.
Сталь легированного типа при правильном процентном соотношении всех входящий в нее элементов не должна менять свои качестве при температуре нагревания до шестисот градусов Цельсия.
Марки легированной стали
Марки легированной стали являются различными. Они представлены в большом многообразии. В зависимости от назначения стали определяется ее маркировка.
Сегодня имеется большое количество требований к маркировке легированной стали. Для данного процесса используются цифровые и буквенные обозначения. Сначала при маркировке используются цифры. Они являются показателями того, сколько содержится в том или ином виде легированной стали сотых долей углерода. После цифр стоят буквы, которые являются обозначением того, какие легирующие добавки были использованы при производстве того или иного легированного типа стали.
После букв могут стоять цифры, обозначающие количество легирующего вещества в составе стального материала. Если после обозначения какого-либо легирующего элемента не стоит цифровое обозначение, то его в составе имеется минимальное количество, не достигающее даже одного процента.
Таблица 1. Сопоставление марок стали типа Cm и Fе по международным стандартам ИСО 630-80 и ИСО 1052-82
СтО | Fe310-0 | Ст4кп | Fe430-A |
Ст1кп | Ст4пс | Fe430-B | |
Ст1пс | Ст4сп | Fe430-C | |
Ст1сп | — | — | Fe430-D |
Ст2кп | Ст5пс | Fe510-B, Fe490 | |
Ст2пс | Ст5Гпс | Fe510-B, Fe490 | |
Ст2сп | Сг5сп | Fe510-C, Fe490 | |
СтЗкп | Fe360-A | ||
СтЗпс | Fe360-B | Ст6пс | Fe590 |
СтЗГпс | Fe360-B | Стбсп | Fe590 |
СтЗсп | Fe360-C | Fe690 | |
СтЗГсп | Fe360-C | — | |
Fe360-D |
Таблица 2. Условные обозначения легирующих элементов в металлах и сплавах
Азот | N | А | — | Неодим | Nd | — | Нм |
Алюминий | А1 | Ю | А | Никель | Ni | — | Н |
Барий | Ва | — | Бр | Ниобий | Nb | Б | Нп |
Бериллии | Be | Л | Олово | Sn | — | О | |
Бор | В | р | — | Осмий | Os | — | Ос |
Ванадии | V | ф | Вам | Палладий | Pd | — | Пд |
висмут | Bi | Ви | Ви | Платина | Pt | — | Пл |
Вольфрам | W | В | — | Празеодим | Pr | — | Пр |
Гадолиний | Gd | — | Гн | Рений | Re | — | Ре |
Галлий | Ga | Ги | Ги | Родий | Rh | — | Rg |
Гафнии | Hf | — | Гф | Ртуть | Hg | — | Р |
Германий | Ge | — | Г | Рутений | Ru | — | Pv |
Гольмий | Но | — | ГОМ | Самарий | Sm | — | Сам |
Диспрозий | Dv | — | ДИМ | Свинец | Pb | — | С |
Европий | Eu | — | Ев | Селен | Se | К | СТ |
Железо | Fe | — | Ж | Серебро | Ag | — | Ср |
Золото | Au | — | Зл | Скандий | Sc | — | С км |
Индий | In | — | Ин | Сурьма | Sb | — | Cv |
Иридий | Ir | — | И | Таллий | Tl | — | Тл |
Иттербий | Yb | — | ИТН | Тантал | Та | — | ТТ |
Иттрий | Y | — | ИМ | Теллур | Те | — | Т |
Кадмий | Cd | Кд | Кд | Тербий | Tb | — | Том |
Кобальт | Co | К | К | Титан | Ti | Т | ТПД |
Кремний | Si | С | Кр(К) |
Источник: https://masakarton.com/dlya-chego-v-stal-vvodyatsya-legiruyuschie-elementy/
Легирование стали: влияние хрома, никеля и молибдена
Хром, никель и молибден являются важнейшими легирующими элементами сталей. Их применяют в различных сочетаниях и получают различные категории легированных сталей: хромистые, хромоникелевые, хромоникельмолибденовые и тому подобные легированные стали.
Влияние хрома на свойства сталей
Стремление хром образовывать карбиды является средним среди других карбидообразующих легирующих элементов. При низком соотношении Cr/C содержания хрома по отношению к железу образуется только цементит вида (Fe,Cr)3C.
С увеличением отношения содержания хрома и углерода в стали Cr/C появляются хромистые карбиды вида (Cr,Fe)7C3 или (Cr,Fe)23C6 или оба.
Хром повышает способность сталей к термическому упрочнению, их стойкость к коррозии и окислению, обеспечивает повышение прочности при повышенных температурах, а также повышает сопротивление абразивному износу высокоуглеродистых сталей.
Карбиды хрома являются и износостойкими. Именно они обеспечивают стойкость стальным лезвиям – не зря из хромистых сталей изготавливают лезвия ножей.
Сложные хроможелезистые карбиды входят в твердый раствор аустенита очень медленно – поэтому при нагреве таких сталей под закалку требуется более длительная выдержка при температуре нагрева. Хром по праву считается самым важным легирующим элементом в сталях.
Добавление хрома в стали побуждает примеси, такие как фосфор, олово, сурьма и мышьяк сегрегировать к границам зерен, что может вызвать в сталях отпускную хрупкость.
Влияние никеля на свойства сталей
Никель не образует в сталях карбидов. В сталях он является элементом, способствующим образованию и сохранению аустенита. Никель повышает упрочняемость сталей.
В комбинации с хромом и молибденом никель еще больше повышает способность сталей к термическому упрочнению, способствует повышению вязкости и усталостной прочности сталей. Растворяясь в феррите никель повышает его вязкость.
Никель увеличивает сопротивление коррозии хромоникелевых аустенитных сталей в неокисляющих кислотных растворах.
Влияние молибдена на свойства сталей
Молибден с готовностью образует в сталях карбиды. Он растворяется в цементите только немного. Молибден образует карбиды молибдена, как только содержание углерода в стали становится достаточно высоким. Молибден способен обеспечивать дополнительное термическое упрочнение в ходе отпуска закаленных сталей. Он повышает сопротивление сталей ползучести низколегированных при высоких температурах.
Добавки молибдена способствуют измельчению зерна сталей, повышают упрочняемость сталей термической обработкой, увеличивают усталостную прочность сталей. Легированные стали с содержанием молибдена 0,20-0,40 % или такое же количество ванадия замедляют возникновение отпускной хрупкости, но не устраняют ее полностью.
Молибден повышает коррозионную стойкость сталей и поэтому широко применяется в высоколегированных ферритных нержавеющих сталях и в хромоникелевых аустенитных нержавеющих сталях. Высокое содержание молибдена снижает склонность нержавеющей стали к точечной (питтинговой) коррозии.
Молибден оказывает очень сильное упрочнение твердого раствора аустенитных сталей, которые применяются при повышенных температурах.
Источник: https://steel-guide.ru/klassifikaciya/legirovannye-stali/legirovanie-stali-vliyanie-xroma-nikelya-i-molibdena.html
Общая информация
Сегодня многие марки стали широко применяются практически в любой сфере жизнедеятельности человека.
Это во многом объясняется тем, что в этом сплаве оптимально сочетается целый комплекс механических, физико-химических и технологических свойств, которые не имеют какие-либо другие материалы.
Процесс выплавки стали непрерывно совершенствуется и потому ее свойства и качество позволяют получить требуемые показатели работы получаемых в итоге механизмов, деталей и машин.
Каждая сталь в зависимости от того, для чего она создана, в обязательном порядке может быть причислена в одну из следующих категорий:
- Конструкционная.
- Инструментальная.
- Специального назначения с особыми свойствами.
Самый многочисленный класс – это конструкционные стали, разработанные для создания разнообразных строительных конструкций, приборов, машин. Конструкционные марки разделяются на улучшаемые, цементуемые, пружинно-рессорные, высокопрочные.
Инструментальные стали дифференцируют в зависимости от того, для какого инструмента они производятся: режущего, измерительного и т. д. Само собой, что влияние легирующих элементов на свойства стали этой группы также велико.
Специальные стали имеют свое разделение, которое предусматривает следующие группы:
- Нержавеющие (они же коррозионностойкие).
- Жаропрочные.
- Жаростойкие.
- Электротехнические.
Группы сталей по химическому составу
Классификацией озвучиваются стали в зависимости от образующих их химических элементов:
- Углеродистые марки стали.
- Легированные.
При этом обе эти группы дополнительно разделяются еще и по количеству содержащегося в них углерода на:
- Низкоуглеродистые (карбона менее 0,3%).
- Среднеуглеродистые (концентрация карбона равно 0,3 – 0,7 %).
- Высокоуглеродистые (карбона более 0,7%).
Что такое легированная сталь?
Под этим определением следует понимать стали, в которых содержатся, параллельно с постоянными примесями, еще и добавки, внедряемые в структуру сплава, с целью увеличения механических свойств полученного в конечном счете материла.
Несколько слов о качестве стали
Этот параметр данного сплава подразумевает под собой совокупность свойств, которые, в свою очередь, обуславливаются непосредственно процессом его производства. К подобным характеристикам, которым подчиняются и легированные инструментальные стали, относятся:
- Химический состав.
- Однородность структуры.
- Технологичность.
- Механические свойства.
Качество любой стали напрямую зависит от того, сколько содержится в ней кислорода, водорода, азота, серы и фосфора. Также не последнюю роль играет и метод получения стали. Самым точным с точки зрения попадния в требуемый диапазон примесей является сопособ выплавки стали в электропечах.
Легированная сталь и изменение ее свойств
Легированная сталь, марки которой содержат в своей маркировке буквенные обозначения вводимых принудительно элементов, меняет свои свойства не только от этих сторонних веществ, но и также от их взаимного действия между собой.
Если рассматривать конкретно углерод, то по взаимодействию с ним легирующие элементы можно условно разделить на две большие группы:
- Элементы, которые формируют с углеродом химическое соединение (карбид) – молибден, хром, ванадий, вольфрам, марганец.
- Элементы, не создающие карбидов – кремний, алюминий, никель.
Стоит заметить, что стали, которые легируются карбидобразующими веществами, имеют очень высокую твёрдость и повышенное сопротивление износу.
Низколегированная сталь (марки: 20ХГС2, 09Г2, 12Г2СМФ, 12ХГН2МФБАЮ и другие). Особое место занимает сплав 13Х, который достаточно тверд для изготовления из него хирургического, гравировального, ювелирного оборудования, бритв.
Расшифровка
легирующих элементов в стали можно определить по ее маркировке. Каждая из таких вводимых в сплав составляющих имеет своё буквенное обозначение. Например:
- Хром – Cr.
- Ванадий –V.
- Марганец –Mn.
- Ниобий – Nb.
- Вольфрам –W.
- Титан – Ti.
Иногда в начале индекса марки стали стоят буквы. Каждая из них несет особый смысл. В частности, буква «Р» означает, что сталь является быстрорежущей, «Ш» сигнализирует, что сталь шарикоподшипниковая, «А» – автоматная, «Э» – электротехническая и т. д. Высококачественные стали имеют в своем цифро-буквенном обозначении в конце литеру «А», а особо качественные содержат в самом конце маркировки букву «Ш».
Воздействие легирующих элементов
В первую очередь следует сказать, что основополагающее влияние на свойства стали оказывает углерод. Именно этот элемент обеспечивает с повышением своей концентрации увеличение прочности и твердости при снижении вязкости и пластичности. Кроме того, повышенная концентрация углерода гарантирует ухудшение обрабатываемости резанием.
хрома в стали напрямую влияет на ее коррозионную стойкость. Этот химический элемент формирует на поверхности сплава в агрессивной окислительной среде тонкую защитную оксидную пленку. Однако для достижения такого эффекта в стали хрома должно быть не менее 11,7%.
Особого внимания заслуживает алюминий. Его применяют в процессе легирования стали для удаления кислорода и азота после ее продувки, дабы поспособствовать уменьшению старения сплава. Кроме того, алюминий значительно повышает ударную вязкость и текучесть, нейтрализует крайне вредное влияние фосфора.
Ванадий – это особый легирующий элемент, благодаря которому легированные инструментальные стали получают высокую твёрдость и прочность. При этом в сплаве уменьшается зерно и повышается плотность.
Легированная сталь, марки которой содержат вольфрам, наделена высокой твёрдостью и красностойкостью. Вольфрам хорош также и тем, что он полностью устраняет хрупкость во время запланированного отпуска сплава.
Для увеличения жаропрочности, магнитных свойств и сопротивления значительным ударным нагрузкам сталь легируют кобальтом. А вот одним из тех элементов, который не оказывает какого-либо существенного влияния на сталь, является кремний. Однако в тех марках стали, которые предназначены для сварных металлоконструкций, концентрация кремния должна быть обязательно в пределах 0,12-0,25 %.
Значительно повышает механические свойства стали магний. Его также используют в качестве десульфуратора в случае использования внедоменной десульфурации чугуна.
Низколегированная сталь (марки ее содержат легирующих элементов менее 2,5%) очень часто содержит марганец, что обеспечивает ей непременное увеличение твердости, износоустойчивости при сохранении оптимальной пластичности. Но при этом концентрация этого элемента должна быть более 1%, иначе не получится достигнуть указанных свойств.
Углеродистые марки стали, выплавляемые для различных масштабных строительных конструкций, содержат в себе медь, которая обеспечивает максимальные антикоррозионные свойства.
Для увеличения красностойкости, упругости, предела прочности при растяжении и стойкости к коррозии в сталь обязательно вводят молибден, который также еще и повышает сопротивление окислению металла при нагреве до высоких температурных показателей. В свою очередь церий и неодим применяются для снижения пористости сплава.
Классификация сталей по свариваемости
Рассматривая влияние легирующих элементов на свойства стали, нельзя обойти вниманием и никель. Данный металл позволяет стали получить превосходную прокаливаемость и прочность, повысить пластичность и ударопрочность и понизить предел хладноломкости.
Титан позволяет получить самые оптимальные показатели прочности и пластичности, а также улучшить коррозионную стойкость. Те стали, которые содержит эту добавку, очень хорошо подвергаются обработке различным инструментом специального назначения на современных металлорежущих станках.
Введение в стальной сплав циркония дает возможность получить требуемую зернистость и при необходимости оказывать влияние именно на рост зерна.
Случайные примеси
Крайне нежелательными элементами, которые очень негативно сказываются на качестве стали, являются мышьяк, олово, сурьма. Их появление в сплаве всегда приводит к тому, сталь становится очень хрупкой по границам своих зерен, что особенно заметно при смотке стальных лент и в процессе отжига низкоуглеродистых марок сталей.
Заключение
В наше время влияние легирующих элементов на свойства стали довольно хорошо изучено. Специалисты тщательно провели анализ воздействия каждой добавки в сплаве.
Полученные теоретические знания позволяют металлургам уже на этапе оформления заказа сформировать принципиальную схему выплавки стали, определиться с технологией и количеством требуемых расходных материалов (руды, концентрата, окатышей, присадок и прочего).
Наиболее часто сталеплавильщики использую хром, ванадий, кобальт и другие легирующие элементы, которые являются достаточно дорогостоящими.
Источник: https://steelfactoryrus.com/dlya-chego-v-stal-vvodyatsya-legiruyuschie-elementy/
Классификация и область применения легированных сталей
Область применения легированных сталей распространяется на сферу машиностроения. Благодаря высокой прочности и временному сопротивлению от 800 до 2000 МПа их используют для производства наружных конструкций, функционирующих при низких отрицательных и высоких положительных температурах, под воздействием ударных знакопеременных нагрузок и агрессивных рабочих сред. Некоторый вид таких легированных сталей находит применение в армировании железобетонных рам.
Состав легированных сталей
Легированные стали помимо традиционных примесей имеют в своем составе специфические вещества, намеренно добавленные в регламентированном объеме с целью обеспечения конкретных физико-механических характеристик. Эти элементы называются легирующими.
Легирующие элементы стали значительно увеличивают прочностные свойства металла, его коррозийную устойчивость, уменьшают хрупкость. Среди таких добавок наиболее востребованы хром, никель, медь, азот (в химически связанном состоянии), ванадий и др.
Смешиваясь с железом, они изменяют и рушат симметричное расположение кристаллической решетки, поскольку владеют иными атомными величинами и формой наружных оболочек электронов.
Значительная конструкционная прочность приобретается за счет рационализированного подбора химического состава легированной стали, ее структуры, терморежимов обработки, способов упрочнения поверхности, повышением металлургических характеристик. Уровень содержания легирующих элементов увеличивает себестоимость стали, это обуславливает строгую обоснованность диапазона добавок.
Ключевая роль в составе легированной стали принадлежит углероду, который повышает ее прочность, но понижает пластические и вязкие качества, из-за чего возрастает порог хладоломкости. В связи с этим его содержание сдерживается в определенных рамках и только в исключительных случаях бывает выше 60 %. По уровню легирования различают металл низко-, средне- и высоколегированный.
Согласно этой классификации легированные стали в первом случае содержат менее 2,5 % добавок, во втором – 2,510 %, в третьем – 1050 %.
Кроме того, различают сталь коррозионно-устойчивую относительно электрохимической и межкристаллитной коррозии; окалино- и жароустойчивую относительно химического распада поверхности при 550 °С и выше; жаропрочную, которая отличается значительной жаростойкостью и способностью к работе под нагрузкой длительное время при 1000 °С и выше.
Жаропрочная высоколегированная сталь представляет собой такую категорию металла, которая может применяться при максимально критических температурах (1/3 от температуры плавления) под действием слабой нагрузки без явных остаточных деформаций и распада.
Главными особенностями данного вида металла являются продолжительная пластическая деформация и прочность во времени, которая выражается в сопротивлении распаду при долгом влиянии температуры.
Жаропрочные качества главным образом выделяются температурой плавления базового элемента сплава, его легированной добавки и параметрами предыдущей термической обработки, которые определяют структурную фазу сплава.
Существенное возрастание конструктивной прочности в легированном железе обуславливается высокой прокаливаемостью, снижением критической скорости закаливания, дроблением зерна. Использование упрочняющей термообработки повышает ряд механических качеств. В результате этого в легированных конструкционных сталях улучшены механические характеристики (тепло-, жаро- и коррозионная стойкость) и существенно изменены физико-химические и технико-эксплуатационные свойства.
Основные характеристики легированных сталей
Преимущественные свойства легированных сталей заключаются в следующих особенностях:
• сочетание значительных прочностных и ударно-вязких параметров при позитивной и негативной температуре; • прекрасные технологические качества; • экономичность; • большие объемы производства; • серьезные параметры сопротивления пластичным деформациям; • легирующие добавки способствуют стабилизации аустенита, что сказывается на повышении прокаливаемости таких сталей; • возможность применения легких охладителей уменьшает риск возникновения брака по трещинам и короблению при закалке, поскольку снижается разрушение аустенита; • увеличивается запас пластичности и вязкости, что обуславливает высокую надежность готовых изделий;
• полезные свойства выявляются только после термической обработки легированной стали, поэтому производимые изделия проходят обязательный этап термического воздействия.
Для описания марок легированных сталей используется буквенно-цифровой алгоритм. Легирующие добавки соответствуют определенной букве алфавита. Цифры, указанные перед буквами, означают уровень углерода в десятых или сотых долях % в зависимости от класса стали.
Цифры, расположенные следом за буквами, означают уровень легирующих добавок в процентах. Когда их уровень составляет больше 1,5 %, то цифровое обозначение не используется.
Указывание буквы А в конце маркировки легированных сталей свидетельствует о том, что металл высококачественный.
Низколегированная сталь характеризуется прекрасной пластичностью, достаточной свариваемостью и крепким сопротивлением хрупкости. Отличные механические качества она получает в ходе закаливания, нормализации и дальнейшего высокого отпуска. У нее в составе низкий уровень углерода.
Высокие прочностные характеристики получаются за счет введения марганцевых, хромовых, никелевых или кремниевых добавок. Влияние легирующих элементов на сталь проявляется в отличной свариваемости и способности поглощать механическое воздействие при деформировании и распаде под ударной нагрузкой с низкой границей хладноломкости. Такая сталь отличается мелкозернистой текстурой.
Но высокая чувствительность к концентрированию напряжений обуславливает пониженную вибрационную устойчивость.
Процесс сварки легированных сталей
Главные параметры сварки низколегированных сталей состоят в их сопротивляемости к локальным межкристаллическим трещинам и хрупкому разрушению. Показателями при выборе режимов сварочных операций являются предельно-допустимые наибольшая и наименьшая скорости остывания околошовной области стали.
Максимум скорости остывания выбирается с учетом предотвращения холодных трещин в этой области. Величина тока процесса сварки принимается в соответствии с типом и толщиной электрода, также оценивают расположение шва, категорию соединения и слой свариваемого железа.
Сварку технологических зон следует осуществлять беспрерывно, без охлаждения шва ниже температуры первоначального нагревания и подогревания его перед проведением дальнейшего прохода выше 200 °С.
Газовое сваривание таких сталей отличается высокой степенью разогревания сварных кромок, низкой коррозионной устойчивостью и сильным выгоранием легирующих элементов, что значительно ухудшает свойства сварных соединений. Для предотвращения отрицательных моментов при такой сварке используют присадочную проволоку, проковывание при 800 °С с дальнейшей нормализацией.
Конструкционные низколегированные стали используются для производства сварных устройств разного назначения. В эту категорию входит термоустойчивая сталь, легированная молибденовыми, вольфрамовыми или ванадиевыми элементами для увеличения температуры разупрочнения металла при нагревании и хромом для увеличения жароустойчивости.
Высоколегированная сталь легко подвергается межкристаллической коррозии, что исключает использование газовой сварки. Допускается такой вариант соединения лишь в случае обработки жаропрочных экземпляров слоем до 2 мм, но при этом все равно остается риск появления короблений.
Сварка высоколегированной стали под флюсом является оптимальным способом соединения металла толщиной до 5 см, поскольку при обработке обеспечиваются стабильные характеристики состава полотна на протяжении всего шва.
Большая часть легированных инструментальных сталей принадлежит к металлам перлитного класса. Они имеют в своем составе небольшое число легирующих веществ, отлично подлежат компрессионной обработке и резанию.
Сталь инструментального типа востребована в производстве режущего инструментария, форм горячей деформации повышенной износостойкости. Металлургическая индустрия производит большой ассортимент продукции из такого материала, соответствующего конкретному ГОСТу.
Основное назначение легированных сталей состоит в изготовлении горячекатаного проката.
Источник: https://promplace.ru/vidy-metallov-i-klassifikaciya-staty/legiruyushie-stali-1487.htm
Для чего в сталь вводятся легирующие элементы — Справочник металлиста
Сталь – один из самых востребованных материалов в мире сегодня. Без нее сложно представить любую существующую строительную площадку, машиностроительные предприятия, да и много других мест и вещей, которые нас окружают в повседневной жизни. Вместе с тем, этот сплав железа с углеродом бывает достаточно различным, потому в данной статье будет рассмотрено влияние легирующих элементов на свойства стали, а также ее виды, марки и предназначение.
Высоколегированная сталь: описание, технология сварки, маркировка и особенности
В наше время достаточно сложно переоценить значение продуктов металлургии, которые широко используются в промышленности, строительстве, изготовлении бытовой утвари, предметов домашнего пользования.
Но особого внимания заслуживают легированные стали, без которых большое количество отраслей (машиностроительная, нефтехимическая, энергетическая, пищевая, изготовление специальных конструкций, основным назначением которых является работа в агрессивных условиях) не смогли бы выполнять свои основные функции.
Возникает закономерный вопрос: а что же такое легированная сталь, ее сплавы? Какая существует классификация легирующих элементов? Каковы основные характеристики и свойства высоколегированной стали? На эти и некоторые другие вопросы мы постараемся максимально развернуто ответить в нашей статье.
Виды: высоколегированные стали, сплавы
Рассмотрим еще один интересный момент. Высоколегированная сталь и ее сплавы также имеют классификацию. Каждый из нижеприведенных видов применяется в определенных условиях:
- Жаростойкие или жаропрочные стали.
- Коррозионно-стойкие.
Исходя из процентного содержания легирующего элемента, различают следующие виды:
- Хромомарганцевая сталь.
- Хромоникелевая.
- Хромистая.
Использование высоколегированных сталей
Где же применяется такой металл? Высоколегированные стали и их сплавы являются неотъемлемыми компонентами в производстве различной продукции. Следующие отрасли не могут обойтись без их использования:
- Химическая.
- Нефтяная промышленность.
- Машиностроение.
- Строительство.
- Изготовление конструкций, основным назначением которых является работа в агрессивных условиях (высокая температура, перепады).
Добавление легирующих элементов позволяет достичь определенных механических свойств. Поэтому высоколегированная сталь используется как хладостойкий компонент. Особенно часто этот металл встречается в машиностроении.
Самыми популярными являются высоколегированные аустенитные стали, в составе которых легированный компонент занимает около 55 %, а все остальное – железо, хром (около 18 %), никель (8 %).
Легирующие компоненты подобного состава определяют дальнейшее назначение изготовленной продукции.
Коррозионно-стойкие высоколегированные стали используют в газовой среде или щелочной кислоте. Характерным их отличием является пониженное содержание углерода – приблизительно 0,12 %. Дальнейшее легирование и термическая обработка позволяют получить особый сплав, который может противостоять агрессивным условиям газовой или жидкометаллической среды.
Использование сталей, содержащих вольфрам или молибден на уровне 7 % и бор, позволяет работать при температуре до 1100 градусов. Вольфрам и молибден – элементы, которые относятся к упрочнителям. Для повышения окалиностойкости производимой продукции в качестве легирующих элементов добавляются кремний или алюминий. Такие конструкции могут использоваться как нагревательные элементы или печи.
Основные характеристики металла
Высоколегированная сталь имеет свойства и характеристики, которые позволяют более широко использовать производимую продукцию. Подобные стали обладают следующими характеристиками:
- Прочность (достигается благодаря термической обработке).
- Коррозионная стойкость.
- Стойкость к деформационным процессам.
- Пластичность (в сравнении с углеродистой сталью пластичность в разы больше).
- Немагнитность (стали, используемые в машиностроении).
- Упругость.
- Закаленность.
- Свариваемость.
Благодаря тому, что формула сплава является различной, свойства получаются разнообразные. Структура легко меняется благодаря термической обработке и легирующим компонентам. Таким образом, можно получить свойства, которые требуются по условиям проекта. К примеру, высоколегированная 18 % хромистая сталь может иметь в составе никель, который дает возможность получить коррозионную стойкость и хладноломкость.
Сварка высоколегированных сталей позволяет получить продукцию, которая может использоваться в любых климатических условиях. Так, метод штампосварки позволяет использовать конечный продукт в критически низких температурах – до минус 253 градусов по Цельсию. Специальная обработка кремнием позволяет получить ферросилиды, которые могут работать в сильных кислотах (азотной, фосфорной и других).
Высоколегированная сталь отличается твердостью, высокой способностью к истиранию. Так, кислотоупорными материалами являются – С15 и С17, а хром, ванадий и марганец повышают износостойкость сплава.
Виды высоколегированных сталей по тепловым свойствам
Исходя из тепловых характеристик, существует следующая классификация:
- Платинит (ЭН42) – используется для производства электродов, которые используются в лампах накаливания. Это объясняется тем, что коэффициент расширения такой же, как у стекла.
- Элинвар (Х8Н36) – идеально подходит для часовых пружин и измерительных приборов. Это объясняется тем, что модуль упругости является постоянным и не разрушается при температурах от -50 до +100 градусов по Цельсию.
- Инвар (И36) – применяется для производства эталонов, калибровочных элементов, так как коэффициент расширения равняется нулю.
Занимательным свойством коррозионной стали (только высоколегированная нержавеющая сталь) является магнитность. Поэтому различают немагнитные и магнитные виды таких металлов. Первые подразделяют на магнитомягкие и магнитотвердые подвиды, а последние имеют в составе кобальт, хром.
ГОСТ: высоколегированные стали
Требования к таким прочным металлам и жаростойким сплавам регламентируются специальными нормативами, а именно ГОСТом 5632-72.
Марки высоколегированных сталей
Наиболее востребованными и известными являются следующие марки сталей:
- Ферритные: 15Х28, 12Х17, 08Х18Т1, 15Х25Т, 08Х18Тч, 10Х13СЮ.
- Мартенситные: 15Х11МФ, 40Х9С2, 18Х11МНФБ, 40Х10С2М, 95Х18, 25Х13Н2, 20Х17Н2, 13Х11Н2В2МФ, 40Х13, 20Х13, 20Х17Н2, 13Х14Н3В2ФР.
- Аустенитно-мартенситные: 07Х16Н6, 08Х17Н5М3, 08Х17Н6Т, 09Х17Н7Ю1.
- Аустенитно-ферритные: 08Х21Н6М2Т, 08Х22Н6Т, 08Х20Н14С2, 20Х23Н13, 12Х21Н5Т, 03Х22Н6М2.
- Мартенситно-ферритные: 12Х13, 18Х12ВМБФР, 14Х17Н2, 15Х12ВНМФ.
- Аустенитные: 05Х18Н10Т, 45Х22Н4М3, 45Х14НМВ2М, 10Х14Г14Н4Т, 03Х18Н10Т, 08Х16Н13М2Б, 12Х18Н12Т, 03Х18Н12, 03Х16Н15М3Б, 10Х11Н23Т3МР, 20Х23Н18, 10Х11Н20Т2Р, 12Х18Н9Т, 12Х18Н9, 20Х25Н20С2.
Применение легирующих марок стали:
- 40Х13, 30Х13 – используют для карбюраторных игл, пружин для транспорта, хирургических инструментов.
- 12Х17 – марка высоколегированной стали, использующаяся для изготовления кухонной утвари или предметов домашнего обихода.
- 20Х13, 12Х13, 08Х13 – используют для изготовления элементов гидравлических установок, конструкций, которые работают в слабоагрессивных условиях.
- 95Х18 – используют для производства высокотвердых шарикоподшипников.
Источник: https://FB.ru/article/253463/vyisokolegirovannaya-stal-opisanie-tehnologiya-svarki-markirovka-i-osobennosti