Какую температуру выдерживает нержавеющая сталь

Нержавеющая сталь: состав, свойства, марки, маркировка

Какую температуру выдерживает нержавеющая сталь

Высокая популярность такого материала, как нержавеющая сталь, объясняется ее уникальными характеристиками, которыми не обладают обычные углеродистые стальные сплавы. Благодаря большому разнообразию марок нержавеющих сталей, представленных на современном рынке, их можно подбирать для успешного решения технологических задач различного характера.

Внешний вид сооружений из нержавеющей стали не изменяется на протяжении всего срока эксплуатации

В чем состоит уникальность нержавеющих сталей

Нержавеющая сталь была запатентована в Англии в 1913 году. Автором данного изобретения, которое, без преувеличения, стало важнейшим этапом развития не только сталелитейной, но и других отраслей промышленности, является металлург Гарри Бреарли.

Наделить обычные стальные сплавы уникальными характеристиками и получить из них коррозионностойкие стали позволило добавление в их химический состав такого элемента, как хром.

Именно хром, которого в составе нержавеющих стальных сплавов должно быть не менее 10,5%, обеспечивает данным материалам такие характеристики, как:

  • исключительно высокая устойчивость к коррозии;
  • очень высокая прочность;
  • хорошая свариваемость;
  • простота обработки методами холодной деформации;
  • длительный эксплуатационный срок без потери первоначальных характеристик;
  • эстетически привлекательный внешний вид изделий, изготовленных из сплавов данной категории.

Влияние легирующих элементов на свойства сталей

Нержавеющие стали в обязательном порядке содержат в своем химическом составе хром и железо. Эти элементы дополняют друг друга, что и обеспечивает данным материалам такие уникальные характеристики. В частности, хром, соединяясь с кислородом, создает на поверхности нержавеющего сплава оксидную пленку, которая и становится надежным препятствием для коррозионных процессов.

Для того чтобы наделить нержавеющую сталь дополнительными характеристиками и значительно улучшить уже имеющиеся свойства, в ее химический состав вводят легирующие добавки – никель, титан, молибден, ниобий, кобальт и др. Такое легирование позволяет создавать различные виды стальных сплавов нержавеющей категории, отличающиеся друг от друга своими характеристиками и, соответственно, назначением.

Мы уже так привыкли к коррозиооностойкой стали, что даже не замечаем, насколько наша жизнь стала комфортнее из-за присутствия в ней нержавейки

Нержавеющая сталь содержит в своем химическом составе углерод, который придает ей высокую твердость и прочность. Следует отметить, что данный химический элемент является обязательным компонентом любого стального сплава и оказывает серьезное влияние на его свойства.

Уникальные характеристики, которыми отличается нержавеющая сталь, позволяют успешно использовать данный металл в самых различных сферах, связанных с эксплуатацией изделий и оборудования в условиях повышенной влажности и постоянного воздействия на них агрессивных сред.

Активно используются нержавеющие стали для производства изделий как промышленного, так и бытового назначения.

В частности, именно из этого металла чаще всего делают столовые приборы и ножи, изготавливают элементы коммуникаций и ограждающих конструкций, детали оборудования и др.

Методы классификации

Характеристики, которыми обладают нержавеющие стали, определяются как химическим составом сплавов, так особенностями их внутренней структуры. В зависимости от данных параметров все стали, относящиеся к категории нержавеющих, делятся на четыре группы.

Ферритные (хромистые)

В химическом составе сталей данной группы хром содержится в объеме 20% (поэтому их и называют хромистыми). Благодаря значительному содержанию хрома изделия из таких сталей способны успешно противостоять воздействию даже очень агрессивных сред. Стальные сплавы данной группы отличаются хорошими магнитными характеристиками.

Химический состав и механические свойства сталей ферритного класса

Крупными потребителями ферритных сталей являются предприятия тяжелой и химической промышленности, из нержавеющих сплавов этого вида производят элементы отопительного оборудования, а также многое другое. Сплавы ферритной группы занимают достаточно большую долю рынка нержавеющих сталей и по уровню своей востребованности лишь незначительно уступают материалам с аустенитной внутренней структурой, но стоят значительно дешевле последних.

Аустенитные

Это нержавеющие стали, значительная доля химического состава которых (до 33%) приходится на хром и никель. Потребители отдают предпочтение этим сплавам из-за того, что такие материалы отличаются высокой прочностью и исключительной устойчивостью к коррозии.

Химический состав и сферы применения жаропрочных аустенитных нержавеющих сталей (нажмите для увеличения)

Мартенситные и ферритно-мартенситные

Благодаря особенностям внутренней структуры такие сплавы отличаются самой высокой прочностью среди сталей. Кроме того, они характеризуются хорошей износоустойчивостью и минимальным количеством вредных примесей в своем составе.

Именно к этой категории относится жаропрочная коррозионностойкая сталь, способная не только успешно противостоять окислительным процессам, но и эксплуатироваться в условиях постоянного воздействия высоких температур, не утрачивая при этом своих первоначальных свойств.

химических элементов в мартенситных и ферритно-мартенситных сталях (нажмите для увеличения)

Комбинированные

Сюда относятся стали с внутренней структурой комбинированного типа: аустенитно-ферритной и аустенитно-мартенситной. Такие инновационные материалы оптимально сочетают в себе лучшие свойства всех вышеперечисленных видов нержавеющих сталей.

Химические составы коррозионностойких сталей аустенитно-мартенситного класса

Владение информацией о том, к какой из групп относится та или иная марка нержавеющей стали, позволяет оптимально подбирать сплавы для решения определенных технологических задач.

Наиболее популярные марки и сферы их применения

Чтобы правильно подобрать нержавеющую сталь для изготовления продукции определенного назначения, можно воспользоваться специальными справочниками, в которых перечислены как все марки такого материала, так их основные характеристики. Между тем в каждой из таких групп есть наиболее популярные марки, которые чаще всего и выбирает потребитель. Перечислим их.

  • 10Х17Н13М2Т и 10Х17Н13М3Т – стали, которые отличаются хорошей свариваемостью и отличной устойчивостью к коррозии. Благодаря таким свойствам нержавеющие стальные сплавы данных марок успешно используют для производства изделий, которые в процессе своей эксплуатации постоянно подвергаются воздействию высокой температуры и агрессивных сред. Свойства сталей данных марок формируются за счет наличия в их химическом составе следующих элементов: хрома (16–18%), молибдена (2–3%), никеля (12–14%), углерода (0,1%), кремния (0,8%), меди (0,3%), серы (0,02%), фосфора (0,035%), марганца (2%), титана (0,7%). Если существует необходимость в выборе нержавеющих сталей данных марок, то следует иметь в виду, что на отечественном рынке можно приобрести и их зарубежные аналоги, а именно: SUS316Ti (Япония), 316Ti (США), OCr18Ni12Mo2Ti (Китай), Z6CNDN17-12 (Франция).
  • 08Х18Н9 и 08Х18Н10 – нержавеющие стальные сплавы, из которых делают трубы как круглого, так и любого другого сечения. Используют эти материалы для производства различных конструкций, эксплуатируемых в машиностроительной и химической промышленности, а также для производства элементов трубопроводов и печных устройств. В химическом составе сталей данных марок содержатся следующие элементы: хром (17–19%), углерод (0,8%), титан (0,5%), никель (8–10%).
  • 10Х23Н18 – сталь этой марки характеризуется высоким содержанием никеля (17–20%) и хрома (22–25%), а также марганца (2%) и кремния (1%) в своем составе. Такое сочетание элементов наделяет сплав требуемыми характеристиками и формирует повышенную склонность к отпускной хрупкости. Следует отметить, что сплав данной марки относится к нержавеющим сталям жаропрочной категории.
  • 08Х18Н10Т – нержавеющий сплав данной марки отличается высокой устойчивостью к процессам окисления, а также хорошей свариваемостью, причем для получения качественного соединения по данной технологии изделия можно не подвергать предварительному нагреву, а также не выполнять их термическую обработку после сварки. Чтобы улучшить прочностные характеристики изделий, изготовленных из такой стали, их необходимо подвергнуть закалке, что оговорено в соответствующем нормативном документе.
  • 06ХН28МДТ – сплав данной марки оптимально подходит для создания сварных конструкций, которые будут в дальнейшем эксплуатироваться в агрессивных средах. В химическом составе этой стали содержатся следующие элементы: хром (22–25%), никель (26–29%), медь (2,5–3,5%).
  • 12Х18Н10Т – изделия, изготовленные из стали данной марки, преимущественно используются для оснащения предприятий химической, целлюлозно-бумажной, строительной, пищевой и топливной отраслей. Этот металл отличается термической стойкостью, хорошей ударной вязкостью и практичностью использования.
  • 12Х13, 20Х13, 30Х13 и 40Х13 – нержавеющие стальные сплавы данных марок практически не поддаются свариванию, но есть у них и положительные свойства. Последние заключаются в том, что эти стали не имеют склонности к отпускной хрупкости, а их внутренняя структура не поражается дефектами, которые на профессиональном языке называются флокенами. Из нержавеющих сталей данных марок изготавливают режущий и измерительный инструмент, а также рессоры и пружины различного назначения.
  • 08Х13, 08Х17, 08Х18Т1 – это нержавеющие стальные сплавы ферритной группы, из которых производят изделия, не испытывающие в процессе своей эксплуатации ударные нагрузки, а также воздействие низких температур.

Виды поверхностей нержавеющей стали

Как расшифровать маркировку

Маркировка нержавеющих сталей, правила формирования которой оговариваются положениями нормативных документов, несет в себе следующую информацию:

  • число, стоящее на первом месте, указывает на количественное содержание в составе сплава такого химического элемента, как углерод (например, в стали марки 08Х17 углерод содержится в количестве 0,08%, а в 40Х13 – 0,4%);
  • после букв в маркировке, каждая из которых обозначает соответствующий химический элемент (Х – хром, Н – никель, М – марганец), проставляются цифры, указывающие на его содержание в целых процентах.

Пример расшифровки обозначения нержавеющей стали

В целом, если говорить о правилах маркировки стальных сплавов, относящихся к категории нержавеющих, они практически ничем не отличаются от тех, которые приняты для обозначения сталей любого другого типа.

Источник: http://met-all.org/metalloprokat/nerzhaveyushhij/nerzhaveyushhaya-stal-sostav-vidy-svojstva-korrozionnostojkaya.html

Жаропрочные стали

Какую температуру выдерживает нержавеющая сталь

Жаропрочные стали сегодня встречаются крайне часто, так как могут использоваться в условиях контакта с агрессивными средами. Типичные изделия, которые изготавливаются из жаропрочных современных сталей: камины и печи, а также котлы и дымоходы. Рассмотрим особенности подобного металла подробнее.

Жаропрочные стали

Основные характеристики

Жаропрочные стали и сплавы могут использоваться для изготовления изделий, которые могут эксплуатироваться при воздействии высоких температур. Обычные стали при воздействии агрессивной среды могут медленно деформироваться, так как воздействие повышенной температуры становится причиной повышения пластичности.

Для того чтобы определить характеристики жаропрочной стали проводятся специальные испытания, особенностями которых можно назвать нижеприведенные моменты:

  1. Жаропрочные стали размещают в печи, после чего нагревают до определенной температуры.
  2. На помещенный сплав оказывается растягивающая нагрузка.

Среди других особенностей отметим следующие моменты:

  1. Высокую жаростойкость. Даже при длительном воздействии высокой температуры основные эксплуатационные качества сплава остаются неизменными.
  2. Прочность к механическому воздействию. При этом металл может сохранять длительную прочность при температурах, которые в иных случаях становятся причиной перестроения кристаллической сетки и изменения основных качеств.
  3. Химический состав сплава также остается неизменным несмотря на воздействие агрессивной среды. Некоторые жаропрочные стали способны выдерживать воздействие агрессивной среды, представленной газами, кислотами и другими веществами.
  4. Низкий показатель прокаливаемости и свариваемости создает довольно много проблем при изготовлении деталей путем сварки.
  5. При добавлении хрома и некоторых других легирующих элементов материал становится коррозионностойким.

Жаропрочная сталь

По тому, сколько жаропрочная сталь может выдерживать воздействие рабочей среды выделяют две категории:

  1. Стали жаропрочные длительного нагрева. Подобный материал может выдерживать длительное воздействие, но при этом температура зачастую не достигает критических значений. Примером можно назвать трубы, которые применяются для транспортировки различной среды
  2. Стали жаропрочные кратковременного нагрева применяются в случае стремительного скачка температуры, значение которой может составлять несколько тысяч градусов Цельсия.

Жаростойкая сталь не подвержены деформации и разрушению по причине необычного химического состава. Именно поэтому основная классификация проводится по концентрации определенных легированных элементов.

Виды жаропрочных сталей

Жаропрочная нержавеющая сталь классифицируется по состоянию внутренней структуры:

  1. Перлитные.
  2. Мартенситные.
  3. Аустенитные.
  4. Мартенситно-ферритные.

Кроме этого все жаропрочные стали марки разделяются на следующие категории:

  1. Ферритные.
  2. Аустеннитно-ферритные.

Рассматривая мартенситные жаропрочные стали можно выделить следующе сплавы:

  1. Х5 применяется для производства трубы, которая будет эксплуатироваться для подачи среды, температура которой не будет превышать 650 градусов Цельсия.
  2. Х5М или Х6СМ могут использоваться для производстве деталей, эксплуатация которых проводится при температуре от 500 до 600 градусов Цельсия. Стоит учитывать, что подобные марки жаропрочных сталей доступны для недлительной эксплуатации.
  3. 4Х9С2 и 3Х13Н7С2 предназначены для эксплуатации при температуре до 950 градусов Цельсия. Стоит учитывать, что этот металл предназначен для производства клапанов двигателей внутреннего сгорания транспортных средств.
  4. 1Х8ВФп представляет собой также жаропрочную сталь, которая может удачно эксплуатироваться при температуре не выше 500 градусов Цельсия на протяжении десятков тысяч часов. Подходит этот спав для производстве элементов, используемых при изготовлении паровой турбины.

Очень часто в состав добавляется хром, за счет чего получается мартенситный сплав. Наиболее распространенными вариантами подобных металлов можно назвать Х6С и Х9С2, Х7СМ и Х10С2М. Среди особенностей их производства можно отметить нижеприведенные моменты:

  1. После процесса легирования проводится закалка при температуре около 1000 градусов Цельсия.
  2. Придать жаропрочность можно путем последующего отпуска металла при температуре 8100 градусов Цельсия. за счет этого создается твердая структура сорбита, которая может выдерживать длительный нагрев.

Для получения подобных составов требуется специальное оборудование, при помощи которого и проводится отпуск при сильном нагреве структуры.

Особенностями ферритных сплавов можно назвать нижеприведенные моменты:

  1. Прочность и жаропрочность достигаются за счет создания мелкозернистой структуры. Получается она после закалки, обжига и отпуска при определенных режимах.
  2. Как правило, в рассматриваемом составе есть от 20-30 процентов хрома. Основные эксплуатационные качества позволяют использовать металл при изготовлении теплообменников.

Примерами ферритных сплавов можно назвать марки Х28 и Х17, Х18СЮ и другие. Нагрев проводится до температуры 180 градусов Цельсия, при более высоких показателях поверхность станет более хрупкой по причине мелкозернистой структуры.

Мартенситно-ферритный состав применяется при производстве машиностроительных деталей. Особенности структуры позволяют проводить ее нагрев до температуры 600 градусов Цельсия без изменения основных эксплуатационных качеств.

Наибольшей востребованностью пользуются жаростойкие сплавы двух основных групп:

  1. Дисперсионно-твердеющие. Подобные составы больше всего подходят для изготовления деталей турбин или клапанов двигателя. Они подвержены длительному нагреву и частому охлаждению. Стоит учитывать, что падение и повышение температуры в большинстве случаев становится причиной перестроения структуры сплава, но дисперсионно-твердеющие могут выдерживать подобное воздействие на протяжении всего срока эксплуатации.
  2. Гомогенные. Применяются они для производства труб или арматуры, которые будут подвергаться большой нагрузке. Стоит учитывать, что трубы во время эксплуатации подвергаются не только воздействию со стороны рабочей среды, но и давлению, а также ударной нагрузке.

Есть жаропрочные стали, которые могут выдерживать воздействие огромных температур. Примером назовем следующие сплавы:

  1. Тантал является одним из самых жаропрочных сплавов, так как может выдерживать воздействие температуры 3000°С.
  2. Вольфрам не реагирует на воздействие окружающей температуры 3410°С.
  3. Ванадий применяется при воздействии окружающей среды 1900°С.
  4. Ниобий не реагирует на воздействие температуры 2415°С.
  5. Рений самый жаропрочный сплав, который не реагирует на воздействие среды 3180°С.
  6. Цирконий можно эксплуатировать при 1855°С.
  7. Гафний применяется в том случае, если на деталь будет оказываться воздействием температуры 2000°С.
  8. Молибден может эксплуатироваться при 2600°С.

Столь высокая жаропрочность достигается путем добавления различных легирующих элементов. Окисление легирующих элементов приводит к защите структуры от воздействия окружающей среды.

Жаропрочные сплавы также классифицируются следующим образом:

  1. 30% рения с добавкой небольшого количества вольфрама.
  2. 10% вольфрама с добавлением незначительного количества тантала.
  3. 10% ниобия и 60% ванадия.
  4. 48% железа и 1% циркония, а также 5% молибдена и 15% ниобия.

Вышеприведенная информация определяет то, что высоко жаропрочная сталь может классифицироваться по следующим показателям:

  1. Температура окружающей среды, при которой сплав не изменяет свои эксплуатационные качества.
  2. Длительность нагрева.
  3. Устойчивость к воздействию химической среды или повышенной влажности.

Сегодня из жаропрочной нержавеющей стали изготавливаются самые различные детали, которые могут эксплуатироваться в опасной среде. Подобная жаропрочная сталь может выдерживать не только длительный нагрев, но и не реагирует на воздействие окружающей среды.

ЭТО ИНТЕРЕСНО:  Как согнуть медную трубку

Применение жаропрочных сталей

Область применения рассматриваемого типа сплавов весьма большая. Жаропрочные стали и сплавы предназначены для применения при условии воздействия высокой температуры или агрессивной окружающей среды. Жаропрочные стали применяют для изготовления:

  1. Корпусных деталей, которые будут подвержены нагреву.
  2. Деталей конструкции двигателей внутреннего сгорания.
  3. Деталей и элементов, которые могут контактировать с различной агрессивной средой: жидкость, химикаты и так далее.

Изготовление деталей работающих при температурах более 400 градусов Цельсия не должно проводится с использованием обычного металла, так как из-за нагрева они потеряют свою прочность и жесткость.

Нагрев становится причиной изменения кристаллической решетки, за счет чего из состав выделяется углерод. Обезуглероживание становится причиной потери прочности и твердости поверхности. При изготовлении деталей паровых двигателей или современных двигателей внутреннего сгорания применение обычной стали приведет к ее расширению, за счет чего линейные размеры изменяться. Критическое изменение линейных размеров становится причиной, по которой конструкция перестает правильно работать.

Усложнение процесса производства рассматриваемого сплава становится причиной существенного повышения его стоимости. Однако в большинстве случаев снизить стоимость конструкций нельзя по причине того, что обычные стали будут быстро изнашиваться.

Деталь из жаропрочной стали

Примером применения жаропрочных сталей можно назвать нижеприведенную информацию:

  1. Турбины работают в сложных эксплуатационных условиях. Для ее изготовления часто используется легированный сплав на основе хрома ХН35ВТР. Подобный материал может выдерживать постоянную нагрузку и вибрацию, а также воздействие жара без изменения своих линейных размеров.
  2. При изготовлении газовых конструкций могут применять ХН35ВМТЮ. Сгорание газа приводит к нагреву рабочей среды до довольно высокой температуры.
  3. Компрессоры, которые работают с нагреваемой средой, имеют в качестве подвижного элемента конструкции диски и лопатки. Для повышения КПД подобной конструкции при их изготовлении используется листовой металл небольшой толщины, что существенно снижает устойчивость к воздействию рабочей среды. Именно поэтому при их изготовлении применяется легированный сплав ХН35ВТЮ.
  4. Роторы турбин также могут быть подвержены воздействию жара. При их изготовлении чаще всего применяют ХН35ВТ.

Важной особенностью рассматриваемых сплавов можно назвать сложность проведения сварочных работ. Жаропрочным сталям характерен процесс разрушения холодного шва. Для решения подобной проблемы применяется современная технология сваривания, которая имеет следующие особенности:

  1. Для устранения рассматриваемого недостатка проводится общий или локальный нагрев поверхности, что повышает ее пластичность. Данная процедура также проводится для минимизации разницы между температурой на периферии и в точке сварки, что позволяет существенно снизить показатель напряжения.
  2. После выполнения сварочных работ зачастую проводится отпуск готового изделия на протяжении нескольких часов и при температуре до 2000°С.

За счет отпуска проводится удаление основной части растворенного в структуре водорода, а остаточный аустенит преобразуется в мартенсит.

Сегодня насчитывается несколько десятков разновидностей жаропрочных сталей, все они обладают своими определенными особенностями. Кроме этого отметим, что довольно часто они обладают также коррозионной стойкостью, так как в состав добавляется большое количество хрома.

Коррозионная стойкость ко всему прочему существенно повышает срок эксплуатации изделия. Однако сложности, возникающие при легировании и последующем термической обработке существенно повышают стоимость изделий.

Кроме этого, жаропрочные сплавы могут иметь самое различное количество легирующих элементов, которые могут придавать материалу и другие особые эксплуатационные качества, к примеру, повышение электропроводности.

Источник: https://stankiexpert.ru/spravochnik/materialovedenie/zharoprochniye-stali.html

Жаростойкая нержавеющая сталь – какая бывает и где применяется

Какую температуру выдерживает нержавеющая сталь

Для стали есть два основополагающих параметра, которые определяют ее устойчивость к высоким температурам – жаропрочность и жаростойкость. Несмотря на то что параметры созвучны они отражают различные свойства материалов.

  • Жаростойкая нержавеющая сталь – это материал способный противостоять образованию коррозии и окалины при температурах более 500 градусов Цельсия. Высокое процентное содержание легирующих примесей связывает атомы железа и не дает распространяться процессу окисления.
  • Жаропрочная нержавеющая сталь – этот материал способен не подвергаться пластической деформации под действием высоких температур.

Если необходима максимальная жаростойкость конструкции, то для ее изготовления применяется жаростойкая нержавеющая сталь с высоким процентным содержанием хрома.

Какие жаростойкие нержавеющие стали встречаются

В зависимости от содержания легирующих примесей жаростойкие стали могут классифицироваться как:

  • Хромистые;
  • Хромоникелевые;
  • Хромокремнистые;

При этом содержание примесей легирующих элементов в нержавеющем металле можно определить по его маркировке. Например, сталь нержавеющая 12Х18Н10Т содержит:

  • 12 сотых долей процента углерода;
  • 18 сотых долей процента хрома;
  • 10 сотых долей процента никеля;
  • Менее 1 сотой доли процента титана.

Где применяются жаропрочные нержавеющие стали

Самые распространенные из нержавеющих жаропрочных материалов с высоким содержанием хрома могут выдерживать температуры выше 1000 градусов если на них не воздействуют механические нагрузки. Основное применение материал нашел для изготовления конструкций эксплуатирующийся при температуре +18 градусов и выше.

Хромокремнистые нержавеющие стали с добавлением большого процента молибдена, применяются для изготовления впускных клапанов системы двигателей внутреннего сгорания. Применяются как для дизельных агрегатов, так и для высокооктановых авиационных моторов.

Хромоникелевые сплавы применяются для изготовления механизмов, работающих при небольших нагрузках. Максимальная жаростойкость материала составляет 900-1050 градусов Цельсия. Сплавы делятся на две основные категории – ферритные и аустенитные. Первые являются наиболее хрупкими и не выдержив/products/stainless-sheets/»>нержавеющие листы, трубы, арматуру к ним.

Источник: https://www.globus-stal.ru/articles/zharostoykaya-nerzhaveyushchaya-stal-kakaya-byvaet-i-gde-primenyaetsya/

Теплопроводность нержавейки таблица — Металлы, оборудование, инструкции

13 Июня 2016

Выбор кастрюль и сковородок может быть довольно сложной задачей. Форма посуды и рукоятки, используемые материалы, дизайн и назначение – все это факторы, влияющие на выбор. Понимание разницы в материалах, используемых для изготовления посуды, – первый шаг к ясности в вопросе, как работает посуда и что важно при ее выборе. 

Базовые принципы

Назначение посуды – это передача энергии от ее источника к продукту. Существует два основных источника: газ и электричество.

В обоих случаях тепло передается не равномерно: газ распределен на отдельные маленькие язычки пламени, а электричество, как правило, поступает по спирали, оставляя места, куда тепло не поступает.

Так как тепло поступает неравномерно, задача повара – компенсировать это путем кулинарных приемов или с помощью посуды.

Высококачественная посуда должна быть не только износостойкой, но и эффективной в процессе передачи энергии от источника к продукту. Существует несколько факторов, влияющих на эту способность. Два основных – это теплопроводность и теплоемкость. Все дискуссии о материалах для посуды фокусируются на этих факторах.

Теплопроводность

Теплопроводность – это способность материала абсорбировать и передавать энергию. Когда нагревательный элемент контактирует с кастрюлей, тепло передается кастрюле. Это увеличивает внутреннюю кинетическую энергию кастрюли (происходит нагревание).

Нагретый предмет передает энергию соседним материалам, которые имеют более низкую температуру. Чем выше теплопроводность, тем быстрее нагревается данный предмет и тем быстрее нагретые части данного предмета передают тепло еще не затронутым частям.

Например, если мы разместим на нагревательном элементе большой лист нержавеющей стали (обладающей довольно низкой теплопроводностью, если говорить о материалах для посуды), то картина будет такой: та часть, которая расположена рядом с нагревательным элементом, нагреется, тогда как остальные области будут прогреваться довольно медленно. Когда тепло дойдет до отдаленных зон листа, его центральная часть, расположенная на источнике тепла, будет просто раскалена.

Одно из решений проблемы – сделать лист толще. Нижняя часть листа будет прогреваться неодинаково с верхней частью, так как она расположена на меньшем расстоянии от нагревательного элемента.

Таким образом, энергия должна передаваться от нижних слоев к верхним, чтобы верхняя часть прогревалась более равномерно. На картинке мы видим срез стального листа и зоны нагрева.

Центральная точка нагрева (белая) со временем остыла, так тепло было передано более высоким слоям стали. В итоге мы видим уже более равномерное нагревание, однако и оно не идеально.

Чем толще сталь, тем равномернее нагрев поверхности. К сожалению, низкая теплопроводность приводит к тому, что общий процесс нагревания замедляется, а также замедляется ответная реакция материала (кастрюли) на повышение или понижение температуры.

Для большинства кулинарных процессов желательно, чтобы посуда быстро нагревалась, имела равномерную температуру и реагировала на ее изменения. Материалы с высокой теплопроводностью отвечают этим запросам, так как быстро передают тепло, стремительно распространяют его по всей поверхности материала и быстро реагируют на изменения температуры.

Приводим таблицу материалов и уровень их теплопроводности:

Материал Теплопроводность
Медь 401 W/m*K
Алюминий 237 W/m*K
Чугун 80 W/m*K
Углеродистая сталь 51 W/m*K
Нержавеющая сталь 16 W/m*K

Теплоемкость

Количество кинетической энергии, сохраняемой в материале, называется теплоемкостью. Это не то же самое, что температура, которая является средней молекулярной кинетической энергией внутри материала. Так, например, 1 кг воды при температуре 100 градусов содержит больше энергии, чем 1 кг стали при той же температуре.

В то время как теплопроводность отвечает за способность материала вбирать в себя энергию, теплоемкость – это объем энергии, способной нагреть или охладить материал. Теплоемкость пропорциональна массе материала, так, 2 кг металла имеют теплоемкость, вдвое превышающую такую же, как у 1 кг металла.

Это означает, что та посуда, которая имеет высокую теплоемкость, медленно нагревается, но долго будет держать тепло.

Когда энергия выпускается, материал остывает, но значительно медленнее по сравнению с материалами с низкой теплоемкостью. Чугун – тот образчик, который часто упоминают как материал с высокой теплоемкостью.

Теплоемкость1 кг чугуна меньше в несколько раз, чем у алюминия, но из-за его большого веса общая теплоемкость выше. 

Толщина материала в посуде часто обозначается производителем (например, 3 мм-ый алюминий), но так как теплоемкость напрямую зависит от веса изделия, необходимо знать еще и плотность материала.

Материал Теплоемкость на 1 кг плотность
Алюминий 910 J/kg*K 2600 kg/m3
Нержав.сталь 500 J/kg*K 7500 — 8000 kg/m3
Углерод. Сталь 500 J/kg*K 7500 — 8000 kg/m3
Чугун 460 J/kg*K 7900 kg/m3
Медь 390 J/kg*K 8900 kg/m3

Умножая теплоемкость на плотность материала, вы обнаружите, что теплоемкость единицы из нержавеющей стали, чугуна или меди в полтора раза выше, чем у алюминия.

Таким образом, потребуется алюминиевая кастрюля в полтора раза толще, чтобы получить такую же теплоемкость.

Термальная диффузия

Возможно, вы обратили внимание, что я слегка ввел ввас в заблуждение, объясняя про теплопроводность.

Дело в том, что теплопроводность самостоятельно не определяет, насколько быстро нагреется кастрюля и как быстро тепло распространится на все ее части. По большому счету, теплоемкость также имеет значение в данном вопросе.

Было бы здорово иметь только одну единицу измерения этого параметра, не правда ли? И такая единица есть – это термальная диффузия. Итак, посмотрим таблицу.

Материал Термальная диффузия
Медь 120 * 10-6 m2/s
Алюминий 100 * 10-6 m2/s
Чугун 22 * 10-6 m2/s
Углерод. сталь 14 * 10-6 m2/s
Нерж. сталь 4.3 * 10-6 m2/s

По данной таблице лучшими в параметре являются медь и алюминий. А теперь мы подходим к финальному понятию – реактивности.

Реактивность

Мало того, что мы должны интересоваться тепловыми свойствами материалов, но еще нужно удостовериться, что материалы, которые мы используем в нашей кухонной посуде, не вредят нам и не оказывают негативное влияние на вкус нашей еды.

Получается, нам нужен еще и нереактивный материал.

К сожалению, медь и алюминий быстро вступают в химический контакт с пищей. Попадание частиц меди в организм может привести к заболеваниям печени, желудка, почек. Каждая поваренная книга упоминает, что желток, взбитый время от времени в медной посуде не может Вам навредить, но с другой стороны, готовите Вы каждый день А алюминий и вовсе может вызвать болезнь Альцгеймера.

Поэтому в дополнение к высокой тепловой диффузивности, мы также хотели бы нереактивный материал.

С другой стороны, у нержавеющей стали, наименее реактивного из всех популярных материалов, используемых в кухонной посуде, также худшая тепловая диффузивность.

Получается, что сегодня физика не является нам другом. Но магией продающих посуду компаний находятся решения по производству посуды с высокой термальной диффузией и при этом не реактивной.

Существует несколько вариантов решения данной задачи: комбинирование меди с нереактивной поверхностью (луженая медь), стальная посуда с медным и алюминиевым диском, сплавы алюминия и стали.

Таблица ниже показывает эффективность этих решений от самых успешных до наименее продуктивных.

Источник: https://spb-metalloobrabotka.com/teploprovodnost-nerzhaveyki-tablitsa/

Накладки на пороги из нержавеющей стали AISI 304. Статьи компании « Weimar Design Group (WDG)»

Стали марок AISI 304 и 304L (по американскому классификатору ASTM A240) и их прямые российские аналоги 08Х18Н10 и 03Х18Н11 (по ГОСТ) являются самыми распространёнными и наиболее универсальными хромоникелевыми высоколегированными коррозионностойкими аустенитными сталями, находящими применение практически во всех отраслях материального производства, как в государствах СНГ, так и по всему миру. Популярность и востребованность этой стали обусловлены, при демократичной цене, её отличной стойкостью к окислению и коррозии, хорошей свариваемостью, уникальным сочетанием механических свойств и особенностями химического состава. В связи с тем, что межкристаллическая коррозия AISI 304 идёт только при высокотемпературном нагреве, эту марку особо рекомендуется использовать в условиях пониженных и сверхнизких температур. Сталь AISI великолепно полируется и надолго сохраняет эстетичный вид, что очень важно при изготовлении из неё архитектурных, строительных и дизайнерских конструкций, предметов интерьера и металлической мебели.

Основные сферы применения стали AISI 304

Трудно найти современную область деятельности, где бы в той или иной степени не применялась сталь AISI 304 или 0818Н10. Из неё, в частности, повсеместно изготавливают:

  •  контейнеры, тару и резервуары для хранения и перевозки всевозможных сыпучих веществ и жидкостей;
  •  приёмники и оборудование для производства и транспортировки агрессивных химических реактивов и лекарственных препаратов;
  •  детали и элементы установок по производству жидких и пастообразных продуктов питания (кремов, кваса, вина, молока и пр.), а также для их транспортировки;
  •  оборудование для бурения скважин и укрепления шахтных выработок;
  •  варочное кухонное оборудования и бытовые столовые принадлежности.

Кроме того, AISI 304 служит основным материалом для многих единиц лабораторных научных приборов, криогенных агрегатов, формовочных плит, опорных элементов и т. п.

Химический состав и дифференциация стали марки AISI 304

Стандарт ASTM A240 регламентирует химический состав стали AISI 304 следующим образом:

  •  углерод — не более 0,08% (AISI 304L — 0,03%);
  •  марганец — не более 2%;
  •  фосфор — не более 0,45%;
  •  сера — не более 0,03%;
  •  кремний — не более 0,75%;
  •  хром — 18,0 — 20,0%;
  •  никель — 8,0 — 10,5% (AISI 304L — до 12%);
  •  азот — 0,1%.

Высокие антикоррозионные показатели AISI 304 связаны с присутствием на поверхности материала тонкой плёнки оксида хрома. А поскольку эта сталь имеет абсолютно однородную структуру по всей толщине, все детали и материалы из неё (листы, прутки,труба профильная, фасонные заготовки) даже при повреждениях верхнего слоя продолжают сохранять прежнюю устойчивость к коррозии.

Разрушенная оксидная плёнка моментально восстанавливается, не допуская распространения повреждения. Аналогичный процесс идёт и в нержавеющих конструкциях, находящихся под атмосферным воздействием. Постоянные перепады температур ведут к появлению микротрещин, в которых тут же формируется защитный слой.

Это свойство стали AISI 304 позволило изготавливать из неё надёжные ёмкости, перила наружных лестниц и балконов, плавательные бассейны и многое другое. Гарантированная долговечность таких изделий — не менее 150 лет.

Наличие в составе AISI 304 большого количества никеля даёт этой марке стали важное преимущество перед безникелевыми аналогами (AISI 430 и др.). Поскольку температура плавления никеля гораздо выше, чем хрома, он остаётся в структуре металла даже при термическом воздействии (например, в процессе сварки), тогда как хром почти полностью выгорает. Сохраняясь в сварном шве, никель обеспечивает его прочность и дополнительную коррозионную стойкость.

Сталь AISI 304 от многих других нержавеющих сталей отличается возможностью дифференциации. Это означает, что в процессе производства материала ему могут быть приданы некоторые специфические свойства, связанные с конкретной областью его последующего применения или требуемым характером обработки. Посредством варьирования состава стали (в пределах установленных норм) можно обеспечивать ей:

  •  более высокую свариваемость;
  •  способность к глубокой и ротационной вытяжке;
  •  способность к формовке растяжением;
  •  повышенную прочность, нагартовку;
  •  дополнительную жаростойкость;
  •  особую пригодность к отдельным видам механической обработки.
ЭТО ИНТЕРЕСНО:  Что такое тайское серебро

Как любая аустенитная сталь, AISI 304 может быть, при необходимости, дополнительно упрочнена либо добавлением в её состав азота (модификация 304LN), либо одним из заводских технологических методов формоупрочнения (нагартовкой, давлением, многократной дрессировочной прокаткой или растяжением).

Процесс азотирования наиболее приемлем к сталям, предназначенным для изготовления крупных объектов нефтегазовой и химической промышленности (транспортных контейнеров, колонн, резервуаров). В этом случае, при более высокой расчётной прочности металла, возможно уменьшение толщины стенок и тем самым — достижение существенной экономии затрат на материалы.

Аустенитые нержавеющие стали, прошедшие формоупрочнение, применяются для производства деталей и элементов, несущих механическую нагрузку — сварных труб, формовочных плит для автотракторной промышленности, обручей для кегов, строительной арматуры, планок, цепей, ограждений и т. д.

Сталь AISI 304 (08Х18Н10), в отличие от 400-й группы «нержавеек» (аналогов 12Х17), не обладает магнитными свойствами, что в определённых случаях бывает очень важным в её практическом применении. Однако, это качество — лишь следствие особой внутренней структуры металла, оно никоим образом не отражается на его химической и коррозионной стойкости, прочностных характеристиках и технологичности в обработке.

Важнейшие эксплуатационные свойства и технологичность AISI 304

К основным эксплуатационным качествам стали AISI 304, определяющим её применяемость и технологичность, относятся следующие её свойства:

1. Устойчивость к высоким и низким температурам.

С увеличением температуры предел прочности AISI 304 снижается. Особенно заметно это проявляется при нагреве материала свыше 425 град. С. Так, если при 600 град. С этот параметр равен 380 N/mm2, то при 800 град. С — уже 170 N/mm2, а при 1000 град. С — всего 50 N/mm2. По этому же алгоритму падает и предел упругости.

Максимальные рекомендуемые температуры обслуживания (образования окалины):

  • при непрерывном воздействии — 925 град. С;
  • при прерывистом воздействии — 850 град. С.

Снижение рабочей температуры до сверхнизких величин ведёт к серьёзному повышению прочности стали: при -78 град. С предел прочности равен 1100 N/mm2, при -161 град. С — 1450 N/mm2, а при -196 град. С — 1600 N/mm2. Несколько увеличивается, хотя и не в такой степени, и предел упругости материала, ударная вязкость при этом ухудшается.

2. Стойкость к коррозии.

Сталь AISI 340 показывает хорошую устойчивость к воздействию большинства кислот (за исключением серной). При атмосферном воздействии по коррозионностойкости она существенно превосходит алюминий и. тем более, обычную углеродистую сталь. Так, в сельских условиях десятилетняя скорость коррозии AISI 340 составляет 0,0025 (алюминия — 0,025, углеродистой стали — 5,8), а в индустриальных морских — 0,0076 (алюминия — 0,686, углеродистой стали — 46,2).

3. Тепловая обработка материала.

Оптимальная температура отжига AISI 304 — от 1010 до 1120 град. С. Наиболее идеальные условия для этой технологической операции — температура 1070 град. С и последующее быстрое охлаждение (или отпуск).

Отпуск стали 304 лучше всего вести 1 час при температуре от 450 до 600 град. С. Если имеется необходимость избежать сенситизации, рабочую температуру следует снизить до 400 градусов.

  • Горячая обработка (ковка).

Ковку AISI 304 или её другую горячую обработку необходимо вести при начальной температуре 1150 — 1260 град. С и конечной — 900 — 925 град. С. При этом отжиг заготовки обязателен. Чтобы добиться однородности прогрева, следует учитывать, что такая однородность у стали AISI 304 достигается в 12 раз медленнее, чем при прогреве углеродистых сталей.

4. Холодная обработка.

Сталь AISI 304 и её модификация 304L, благодаря хорошей пластичности и высоким прочностным качествам, легко поддаются холодной обработке. К типичным видам такой обработки относятся изгиб, вытяжка (ротационная и глубокая) и формовка растяжением.

Для операции формовки, в принципе, можно применять то же оборудование и тот же инструмент, что и для углеродистых сталей, однако поскольку аустенитные стали в ходе этого процесса дополнительно упрочняются, здесь необходимы механические усилия в полтора — два раза выше.

Пределы изгиба при различной толщине листа AISI 304 различны. При толщине до 3 мм минимальный радиус изгиба может быть практически нулевым, при большей толщине — равным половине толщины листа. Угол гибки — 180 град. при толщине 3 — 6 мм и 90 град. при толщине 6 — 12 мм.

Обратное распрямление у аустенитных сталей больше, чем у углеродистых. Поэтому, заготовку следует слегка «перегибать» (при загибе на прямой угол перегиб может составлять от 2 до 25 градусов, в зависимости от соотношения радиуса и толщины листа).

Рекомендуемый минимальный радиус гибки стали 304 — двойная толщина листа.

  • Глубокая и ротационная вытяжка.

Используя пресс, при глубокой вытяжке материалу позволяют свободно течь, не подвергая заготовку торможению. Но при вытяжке изделий с точными размерами чаще всего применяют формовку с растяжением (торможением), в этом случае желательно предусмотреть процесс упрочения, совмещённый с формовкой.

Ротационная вытяжка ведётся на токарно-давильном оборудовании и, по сути, является формовкой с точением. Этим методом обычно формуются изделия симметричного вращения (вёдра и т. п.), которые не требуют последующей полировки.

5. Свариваемость.

Сталь AISI 304 может легко свариваться любым современным методом. Последующая термическая обработка шва не нужна. Но во избежание риска межкристальной коррозии, полезно провести дополнительный отжиг при температуре 1050 — 1150 град. С с быстрым последующим охлаждением. Остывший сварочный шов следует очистить от окалины и пассировать (обработать травильной пастой).

Источник: https://WDG-rus.ru/a163938-nakladki-avtomobilnye-porogi.html

Дымоход из нержавеющей стали? Какой выбираем?

Мы представляем три марки дымоходов: Ферингер, Феррум, Craft.

Начнем с дымоходов Ферингер

Завод Ферингер выпускает различные тепловые агрегаты для бань, саун, помещений и дымоходы из черной стали.

Основное их применение дымоходов из черной стали — банные и отопительные печи. Эти дымоходы сделаны из черной стали толщиной 3 мм. По сроку службы они примерно соответствуют дымоходам из нержавейки из стали AISI 439 0,8 мм тощиной. Их мы рекомендуем устанавливать внутри парилки. Основным плюсом этих дымоходов является то, что они в отличии от нержавеющих дымоходов не темнеют от высокой температуры.

Ну и еще не большой плюс то что от этого дымохода поменьше жесткого излучения.

Эти плюсы стоят того, что бы поставить внутрь парилки эти дымоходы. Выглядеть это будет так Данные дымоходы не идут в сэндвич варианте, поэтому проводить их через перекрытия будет менее пожаробезопасно. Покрыты они термостойкой светлой краской. При использовании этих дымоходов есть ограничения — стандартный их диаметр 110 мм.

Их можно использовать для диаметров дымохода ф115 и ф120мм но только через переходники с этого диаметра на ф110мм этого же производителя. В ассортименте этого производителя представлены дымоходы различной длинны, шиберы, конвекторы, дымоходы с сетками.

Дымоходы Феррум

Этот завод спрофилирован только на производстве дымоходов из нержвеющей стали. Ассортимент завода просто огромен. Феррум производит все элементы, позволяющие собрать дымоход. Сегодня завод использует два вида стали нержавейку и оцинкованную сталь.

Нержавейка идет двух толщин 0.8мм AISI 430 (идет только на внутреннюю стенку двухконтуного дымохода и на одноконтурный дымоход), 0.5мм AISI 430 — идет на внешнюю стенку двухконтурного дымохода, для газовых дымоходов на внутреннюю стенку и на одностенные дымоходы из нержавеющей стали для газа.

Краткие сведения по 430 и 439 стали

стандарт ASTM: 430 Ti AISI, 439 AISI — ферритные стали. 430 AISI является низко-углеродистой хромисто-железной нержавеющей сталью.

Сталь имеет хорошее сопротивление коррозии в мягко коррозийных окружающих средах и хорошее сопротивление окислению в высоких температурах. В отожженном состоянии сталь податлива, не укрепляется чрезмерно в течение холодной обработки и может быть легко формуема.

Сталь имеет ограниченную свариваемость и не должна использоваться в сваренных обьектах подвергающимся нагрузкам. Имея ферритную структуру, 430 AISI является хрупкой в поднулевых температурах, и не может использоваться в в криогенных Приложениях.

Поскольку сталь не содержит никель или молибден, она более дешевая, чем любая из сталей 300 ряда.Российский аналог 430 AISI по ГОСТ — 12Х17. AISI 439 сталь — идет с добавлением титана.

Стали серии 400 сохраняют достаточно высокие механические свойства при повышенных температурах эксплуатации (см. рис.), обеспечивая конструкционную прочность конструкции.

Дымоходы из такой стали рекомендованы в первую очередь к использованию для банных печей, котлов, каминов, работающих на дровах в бытовых условиях, котельных небольшой мощности. В таких условиях эти дымоходы проработают очень долго.

Дымоходы Craft

Завод так же спрофелирован на производство дымходов только из нержавеющей стали.

Использует стали 300-й серии AISI-304,321,316,309 и 310 — аустенитные стали. Эти стали более устойчивы к внешним, агрессивным, высокотемпературным условиям работы, эти стали содержат молибден, никель, титан. Эти элементы повышают срок службы дымохода на порядок по сравнению с 400 серией. Эти дымоходы будут долго работать на предприятиях и организациях, использующих кательные большой мощности.

Чем интересны эти стали индивидуально?

Нержавеющая сталь AISI 304 (08Х18Н10 – ГОСТ СНГ) используется в основном в декоративных целях.Сваривается без ограничений (ручная, контактная, электрошлаковая, дуговая сварка).

Эта марка стали хорошо полируется, не является магнитной, имеет высокую прочность при низких температурах, считается универсальной.

Применяется также в молочной/химической/текстильной/бумажной/фармацевтической/нефтяной промышленности, машиностроении и производстве товаров народного потребления. Рекомендуемая рабочая

температура – до 300 С. Это – аустенитная нержавеющая сталь с низким содержанием углерода.

Нержавеющая сталь 316 AISI (10Х17Н13М2) – это улучшенная версия 304, так как в состав добавлен молибден. Отличается повышенной устойчивостью к воздействию коррозии. При высоких температурах показывает лучшие характеристики по сравнению с теми нержавеющими сталями, которые не содержат молибден. Наличие молибдена способствует защите от питтинговой коррозии в морской воде, хлористой среде и парах уксусной кислоты.

AISI 316 — Рекомедуется к использованию при топке агрегата- газом, дизелем, дровами

Нержавеющая сталь AISI 310 – аустенитная тугоплавкая жаростойкая сталь. Используется при температурах до 1000 С в восстанавливающей среде. Эта нержавеющая сталь применяется в агрегатах с высокой температурой горения даже в которых жгут уголь.

AISI 310 — Рекомедуется к использованию при топке агрегата-дровами, углём, торфом, брикетом

Нержавеющая сталь 321 AISI (12Х18Н10Т) – используется в агрессивных средах, отличается хорошей сопротивляемостью к межкристаллитной коррозии, повышенной устойчивостью против окисления на воздухе.Кроме того, обладает высокой жаростойкостью при температурах 600-800 С.

AISI 321 — Рекомедуется к использованию при топке агрегата- дровами

Схема — по дымоходам

Из какой же стали выбрать дымоход?
окончательное Ваше решение здесь

Дымоходы из нержавейщей стали фото:

Источник: https://pechimax.ru/st-4.html

От чего зависит температура плавления стали: каким образом получается нержавеющая сталь, конструкционная и др

Каждый год во всех частях нашей планеты вместе производится около полутора миллионов тысяч тонн стали. Её используют в множестве отраслей, начиная от производства зубных протезов, заканчивая деталями космических шаттлов. Для каждой отрасли найдётся такая марка стали, которая будет подходить по физическим и механическим свойствам, по структуре и химическому составу.

Разные характеристики получаются в зависимости от того, какие примеси и в каком количестве содержатся в металле, каким способом он изготовлен и как обработан. Оттого меняются итоговые свойства, такие как плотность, температура плавления, теплопроводность, предел прочности при растяжении, линейное тепловое расширение, удельная теплоёмкость и так далее.

Определение стали: что это такое?

Сталью является сплав железа с углеродом, в комплекте с другими различными элементами. При этом железа в нём должно содержаться не менее 45%. Раз речь зашла о составе, то рассмотрим классификацию по химической составляющей.

Основное разделение идёт на сталь углеродистую и легированную (пример — нержавеющая сталь). Первый вид имеет несколько подвидов по количеству процентного содержания углерода:

  • низкоуглеродистые стали, в которых содержится до 0,25% C;
  • среднеуглеродистые (до 0,55% C);
  • высокоуглеродистые (от 0,6% до 2% C).

Аналогично и второй вид разделяется на три подвида по содержанию легирующих элементов:

  • низколегированные (до 4%);
  • средне (до 11%);
  • высоколегированные (более 11%).

Кроме того, в стали могут содержаться и неметаллические включения. В зависимости от них идёт классификация по другому параметру – по качеству. Чем меньший процент неметаллических включений, тем выше качество стали. В целом здесь выделяют четыре вида:

  • обыкновенная;
  • качественная;
  • высококачественная;
  • особо высококачественная сталь.

Её состав также определяет разделение на виды по назначению. Их множество, например, криогенные стали, конструкционные, жаропрочные, нержавеющие, инструментальные и т. д. Разделение на виды идёт также по структуре:

  • ферритная;
  • аустенитная;
  • бейнитная;
  • мартенситная;
  • перлитная.

В структуре могут преобладать две фазы и даже более. Сталь в этом случае разделяют соответственно на двухфазную и многофазную.

Основные моменты технологии производства

Суть производства стали заключается в том, чтобы в процессе переработки исходного материала в нём понизилась концентрация углерода, серы, фосфора и других нежелательных составляющих. Эти элементы делают сталь ломкой и хрупкой, а избавление от них приносит повышенную прочность и жаростойкость. Исходным материалом чаще всего выступает чугун и стальной лом.

Процесс производства может быть выполнен одним из двух основных способов, которые обобщают собой однотипные методы – это либо конвертерный, либо подовый процесс. Первый не требует дополнительных источников тепла, так как его используют для расплавленного передельного чугуна, который и так обладает достаточной температурой.

В этом случае происходит вдувание чистого кислорода (или обогащённого им воздуха, что уже устарело) в расплавленный металл, который окисляет присутствующие в чугуне элементы типа фосфора, марганца, кремния или углерода.

Это, в свою очередь, позволяет поддерживать достаточное количество тепла для пребывания стали в жидком состоянии.

При таком изготовлении может получиться три вида стали – кипящая, полуспокойная и спокойная. Спокойная сталь обладает лучшим составом и более однородной структурой, когда кипящая содержит в себе весомое количество растворённых газов. Для полуспокойной характерны промежуточные значения между первыми двумя видами. Естественно, что спокойная сталь, исходя из лучших характеристик, дороже. Её цена выше, чем у кипящей, примерно на 10-15%.

Подовые процессы происходят при высоких температурах, которых добиваются за счёт задействования внешнего источника тепла для переработки твёрдой шихты. Их есть два вида – мартеновский процесс и электротермический. Мартеновский происходит в результате нагрева исходного материала от сгорания газа или мазута, а электротермический выполняется в индукционных или дуговых печах, где нагрев идёт при помощи электричества.

При необходимости, для производства особых видов стали могут быть использованы два последовательных метода, а для отдельных специальных её видов существует иные специфические процессы. Кроме того, появляются новые методы производства, которые ещё не стали широко используемыми, но успешно развиваются. Такими методами является электрошлаковый переплав, электролиз, прямое восстановление стали из руды и т. д.

Обработка стали для получения специальных свойств

Чтобы придавать материалу определённые свойства или изменять их, применяют легирующие элементы и различные виды обработки.

В качестве легирующих элементов выступают некоторые металлы. Ими могут быть хром, алюминий, никель, молибден и другие. Таким образом, добиваются определённых электрических, магнитных или механических свойств, а также коррозионной устойчивости. Так, нержавеющая сталь получается, если она была легирована хромом.

Изменяются свойства стали путём обработки:

  • термомеханической (ковка, прокатка);
  • термическая (отжиг, закалка);
  • химикотермической (азотирование, цементизация).
ЭТО ИНТЕРЕСНО:  Как паять серебро в домашних условиях паяльником

Термическая обработка имеет в своей основе свойство полиморфизма – при нагреве и охлаждении кристаллическая решётка способная менять своё строение. Это свойство характерно основе стали – железу, потому присуще и ей.

Разные виды элементов, которые могут присутствовать в стали

Углерод. С повышением процентного содержания в стали этого элемента увеличивается её прочность и твёрдость. Но идут потери в пластичности.

Сера. Эта примесь вредна, так как вместе с железом она образует сернистое железо. Из-за него в материале возникают трещины как следствие потери связей между зёрнами при обработке высокой температурой и под воздействием давления. Негативно наличие серы сказывается и на прочности стали, её пластичности, износостойкости, коррозийной стойкости.

Феррит. Это железо, которое обладает объемноцентрированной кристаллической решёткой. Характерно, что сплавы с его наличием выходят мягкими и обладают пластичной микроструктурой.

Фосфор. Если сера уменьшает прочность при высоких температурах, то фосфор придаёт стали хрупкости при температурах пониженных. Тем не менее есть группа сталей, в которой повышено содержание этого, казалось бы, вредного элемента. Изделия из такого металла очень легко поддаются резке.

Цементит, он же карбид железа. Его влияние противоположно к влиянию феррита. Сталь становится твёрдой и хрупкой.

Конкретный пример легированной стали

Нержавеющей называют такую сталь, которая может сопротивляться коррозии в агрессивных средах или в атмосфере. Её состав был открыт в 1913 году Гарри Бреарли. Он заметил во время экспериментов, что сталь, в которой содержалось большое количество хрома, могла активно сопротивляться кислотной коррозии.

Сейчас нержавеющую сталь разделяют на три группы:

  • жаропрочная – обладает высокой механической прочностью даже при значительных температурах;
  • жаростойкая – имеет устойчивость к коррозии в условиях высоких температур и агрессивной среды. Подойдёт для использования на химических заводах;
  • коррозионно-стойкая нержавеющая сталь – обладает такой стойкостью к коррозии, которой достаточно для бытовых условий и для несложных промышленных задач. Из неё могут быть изготовлены хирургические инструменты, бытовая посуда, детали для машиностроительной промышленности, лёгкой промышленности или, например, нефтегазовой.

Чтобы получить сталь, которая будет более стойкой к коррозийным влияниям, нужно повышать в ней количество хрома. Так, для обычной среды его достаточно от 13 до 17%. Если хрома больше 17%, то такой сплав можно использовать в более агрессивных средах. Чтобы металл не разрушался от влияния сильных кислот, сплав стали должен содержать не только хром, но и никель с присадками молибдена, силициума, купрума.

Пределы значений различных характеристик стали — температура плавления, удельная теплопроводность и т. п.

Исходя из того, что состав сплава может быть разным, то и значение различных свойств для каждого вида стали своё. Приведём обобщённые показатели, в которых указаны пределы значений свойств.

  • коэффициент теплопроводности – 39 ккал/м*час*град;
  • плотность стали лежит в пределах (от 7,7 до 7,9)*103 кг/м3;
  • температура плавления стали – в зависимости от её марки от 1300 °C до 1400 °C;
  • удельный вес – от 0,7 до 7,9 г/см3;
  • удельная теплоёмкость (при значении температуры 20 °C) — 0,11 кал/град;
  • удельная теплоёмкость плавления – 49 кал/град;
  • коэффициент линейного расширения стали для разных видов (при температуре примерно 20 °C):
    • сталь 3 (марка 20) – 11,9 (град-1);
    • сталь нержавеющая – 11,0 (град-1);
  • предел прочности при растяжении:
    • для марки стали, применяемой для конструкций – 38-42 (кГ/мм2);
    • для машиноподелочной (она же углеродистая) – 32-80 (кГ/мм2);
    • для рельсовой – 70-80 (кГ/мм2);
    • кремнехромомарганцовистая сталь (наибольший показатель)– 155 (кГ/мм2).

Источник: https://stanok.guru/metalloprokat/nerzhaveyuschiy-prokat/vidy-stali-nerzhaveyuschaya-inye-marki-temperatura-plavleniya.html

Температура плавления стали: физическая таблица, виды и свойства чугуна

Сталь — это сплав железа, к которому примешивают углерод. Её главная польза в строительстве — прочность, ведь это вещество длительное время сохраняет объем и форму. Все дело в том, что частицы тела находятся в положении равновесия. В этом случае сила притяжения и сила отталкивания между частицами являются равными. Частицы находятся в чётко обозначенном порядке.

  • Температуры плавления стали
  • Нержавеющая сталь
  • Чугун и сталь

Есть четыре вида этого материала: обычная, легированная, низколегированная, высоколегированная сталь. Они отличаются количеством добавок в своём составе. В обычной содержится малое количество, а дальше возрастает. Используют следующие добавки:

  • Марганец.
  • Никель.
  • Хром.
  • Ванадий.
  • Молибден.

Температуры плавления стали

При определённых условиях твёрдые тела плавятся, то есть переходят в жидкое состояние. Каждое вещество делает это при определённой температуре.

  • Плавление — это процесс перехода вещества из твёрдого состояния в жидкое.
  • Температура плавления — это температура, при которой твёрдое кристаллическое вещество плавится, переходит в жидкое состояние. Обозначается t.

Физики используют определённую таблицу плавления и кристаллизации, которая приведена ниже:

Вещество t,°C Вещество t,°C Вещество t,°C
Алюминий 660 Медь 1087 Спирт — 115
Водень — 256 Нафталин 80 Чугун 1200
Вольфрам 3387 Олово 232 Сталь 1400
Железо 1535 Парафин 55 Титан 1660
Золото 1065 Ртуть — 39 Цинк 420

На основании таблицы можно смело сказать, что температура плавления стали равна 1400 °C.

Нержавеющая сталь

Нержавеющая сталь — это один из многих железных сплавов, которые содержатся в стали. Она содержит в себе Хром от 15 до 30%, который делает её ржаво-устойчивой, создавая защитный слой оксида на поверхности, и углерод. Самые популярные марки такой стали зарубежные. Это 300-я и 400-я серии.

Они отличаются своей прочностью, устойчивостью к неблагоприятным условиям и пластичностью. 200-я серия менее качественная, но более дешёвая. Это и является выгодным для производителя фактором.

Впервые её состав заметил в 1913 году Гарри Бреарли, который проводил над сталью много разных экспериментов.

На данный момент нержавейку разделяют на три группы:

  • Жаропрочная — при высоких температурах имеет высокую механическую прочность и устойчивость. Детали, которые из неё изготавливаются применяют в сферах фармацевтики, ракетной отрасли, текстильной промышленности.
  • Ржаво-стойкая — имеет большую стойкость к процессам ржавления. Её используют в бытовых и медицинских приборах, а также в машиностроении для изготовления деталей.
  • Жаростойкая — является устойчивой при коррозии в высоких температурах, подходит для использования на химических заводах.

Температура плавления нержавеющей стали колеблется в зависимости от её марки и количества сплавов приблизительно от 1300 °C до 1400 °C.

Чугун — это сплав углерода и железа, он содержит примеси марганца, кремния, серы и фосфора. Выдерживает невысокие напряжения и нагрузки. Один из его многочисленных плюсов — это невысокая стоимость для потребителей. Чугун бывает четырех видов:

  • Белый — имеет высокую прочность и плохую способность к обработке ножом. Виды сплава по увеличению количества углерода в составе: доэвтектический, эвтектический, заэвтектический. Его назвали белым из-за того, что в разломе он имеет белый цвет. А также белый чугун обладает особым строением металлической массы и большой изностойкостью. Полезен в изготовлении механических деталей, которые будут работать в среде с отсутствием смазки. Его используют для изготовления приведённых ниже видов чугуна.
  • Серый чугун — содержит углерод, кремний, марганец, фосфор и немного серы. Его можно легко получить, и он имеет плохие механические свойства. Используется для изготовления деталей, которые не подвергаются воздействию ударных нагрузок. В изломе есть серый цвет, чем он темнее, тем материал мягче. Свойства серого чугуна зависят от температуры среды, в которой он находится, и количества разных примесей.
  • Ковкий чугун — получают из белого в результате томления (длительного нагрева и выдержки). В состав вещества входят: углерод, кремний, марганец, фосфор, небольшое количество серы. Является более прочным и пластичным, легче поддаётся обработке.
  • Высокопрочный чугун — это самый прочный из всех видов чугунов. Содержит в себе углерод, марганец, серу, фосфор, кремний. Имеет большую ударную вязкость. Из такого важного металла делают поршни, коленчатые валы и трубы.

Температуры плавления стали и чугуна отличаются, как утверждает таблица, приведённая выше. Сталь имеет более высокую прочность и устойчивость к высоким температурам, чем чугун, температуры отличаются на целых 200 градусов. У чугуна это число колеблется приблизительно от 1100 до 1200 градусов в зависимости от содержащихся в нем примесей.

Источник: https://tokar.guru/metally/stal/temperatura-plavleniya-nerzhaveyuschey-stali-i-chuguna.html

Жаропрочные стали и сплавы

Жаропрочная сталь используется при изготовлении разных деталей, которые контактируют с агрессивными средами, при этом подвергаются значительным нагрузкам, вибрациям и высокому термическому воздействию. К примеру, сюда относятся следующие изделия: турбины, печи, котлы, компрессоры и т.п. Далее представлены характеристики термостойких, жаропрочных сплавов, классификация, марки, особенности их применения.

Жаростойкая сталь (или окалиностойкая) – металлический сплав, используемый в ненагруженном или слабонагруженном состоянии и способный на протяжении длительного времени в условиях высоких температур (более 550 ºС) сопротивляться газовой коррозии.

Жаропрочные металлы – изделия, которые под высоким термическим воздействием сохраняют свою структуру, не разрушаются, не поддаются пластической деформации. Важная характеристика таких металлов – условный предел ползучести и длительной прочности.

Жаропрочные сплавы могут быть жаростойкими, однако не всегда такими бывают, поэтому в агрессивных средах могут быстро повредиться по причине окисления.

Свойства жаростойких и жаропрочных сплавов

Для повышения жаростойкости используются легирующие добавки, которые также улучшают прочность металлов. Благодаря легированию на поверхности сплавов образуется защитная пленка, снижающая скорость окисления изделий.

Основные легирующие элементы: никель, хром, алюминий, кремний. В процессе нагрева образуются защитные оксидные пленки (Cr,Fe)2O3, (Al,Fe)2О.

При содержании 5–8 % хрома жаростойкость стали увеличивается до 700–750 градусов по Цельсию, 17 % хрома – до 1000 градусов, при 25 % хрома – до 1100 градусов.

Жаропрочные марки металлов – сплавы на основе железа, никеля, титана, кобальта, упрочненные выделениями избыточных фаз (карбидов, карбонитридов и др.). Жаропрочностью обладают хромоникелевые и хромоникелевомарганцевые стали. Под воздействием высоких температур они не склонны к ползучести (медленная деформация при наличии постоянных нагрузок). Температура плавления жаропрочной стали составляет 1400-1500 °С.

Классификация жаропрочных и жаростойких сплавов

При температуре до 300 ºС используется обычная конструкционная (углеродистая) сталь – прочный и термостойкий металл. Для работы в условиях свыше 350 ºС требуется применение жаропрочных металлов. Основные виды сплавов повышенной термостойкости и термопрочности:

  • Перлитные, мартенситные и аустенитные;
  • кобальтовые и никелевые сплавы;
  • тугоплавкие металлы.

К перлитным жаропрочным сталям относят котельные стали и сильхромы, содержащие малый процент углерода. Температура рекристаллизации материала повышается за счет легирования молибденом, хромом, ванадием. Сплавы характеризуются неплохой свариваемостью.

Производство мартенситных сталей осуществляется с использованием перлитных и добавок хрома, закалки при 950–1100 ºС. Они содержат более 0,15 % углерода, 11-17 % хрома, небольшое количество никеля, вольфрама, молибдена, ванадия.

Стали мартенситного класса устойчивы к воздействию коррозии в щелочных, кислотных растворах, повышенной влажности, в случае термообработки при 1050 градусах отличается высокой жаропрочностью.

Жаропрочные аустенитные стали могут иметь гомогенную или гетерогенную структуру. В сплаве с гомогенной структурой, не упрочняемых термообработкой, содержится минимум углерода, много легирующих элементов, что обеспечивает сопротивление ползучести.

Такие материалы подходят для применения при температуре до 500 °С.

В гетерогенных твердых растворах, упрочняемых термообработкой, образуются карбидные, интерметаллидные, карбонитридные фазы, что обеспечивает применение жаропрочных сплавов под напряжением при температуре до 700 °С.

При температуре до 900 °C эксплуатируют никелевые и кобальтовые сплавы: они применяются при производстве турбин реактивных двигателей, являются лучшими жаропрочными материалами. Кобальтовые сплавы по жаропрочности немного уступают никелевым, являются более редкостным. Отличаются высокой теплопроводностью, коррозионной устойчивостью при высоких температурах, стабильностью структуры в процессе длительной работы.

никеля в никелевом сплаве составляет свыше 55 %, углерода 0,06-0,12 %. В зависимости от структуры различают гомогенные (нихромы), гетерогенные (нимоники) сплавы никеля. Нихромы, изготавливаемые на основе никеля, в качестве легирующей добавки содержат хром. Им свойственна не только жаропрочность, но и высокая жаростойкость. Нимоники состоят из 20 % хрома, 2 % титана, 1 % алюминия. Марки сплавов: ХН77ТЮ, ХН55ВМТФКЮ, ХН70МВТЮБ.

При температурах до 1500 градусов и выше могут работать жаропрочные сплавы из тугоплавких металлов: вольфрама, ниобия, ванадия и др.

Температура плавления тугоплавких металлов.
Металл Температура плавления, ºC
Вольфрам 3410
Тантал Около 3000
Ванадий 1900
Ниобий 2415
Цирконий 1855
Рений 3180
Молибден Около 2600

Наиболее востребованным является молибденовый сплав. Для легирования применяются такие элементы, как титан, цирконий, ниобий. Для предотвращения коррозии выполняют силицирование изделия, в результате чего на поверхности образуется защитное покрытие.

Защитный слой позволяет эксплуатировать жаропрочку при температуре 1700 градусов на протяжении 30 часов.

Другие распространенные тугоплавкие сплавы: вольфрам и 30 % рения, 60 % ванадия и 40 % ниобия, сплав железа, ниобия, молибдена и циркония, тантал и 10 % вольфрама.

Марки жаростойких и жаропрочных сталей

В зависимости от состояния структуры различают аустенитные, мартенситные, перлитные и мартенситно-ферритные жаропрочные металлы. Жаростойкие сплавы разделяются на ферритные, мартенситные или аустенитно-ферритные виды.

Применение мартенситных сталей.
Марки стали Изделия из жаропрочных сталей
4Х9С2 Клапаны автомобильных двигателей, рабочая температура 850–950 ºC.
1Х12H2ВМФ, Х6СМ, Х5М, 1Х8ВФ, Х5ВФ Узлы, детали, работающие при температуре до 600 ºC на протяжении 1000–10000 часов.
Х5 Трубы, эксплуатируемые при рабочей температуре до 650 ºC.
1Х8ВФ Элементы паровых турбин, которые работают при температуре до 500 ºC на протяжении 10000 часов и более.

Перлитные марки, имеющие хромокремнистый и хромомолибденовый состав жаропрочной стали: Х13Н7С2, Х10С2М, Х6СМ, Х7СМ, Х9С2, Х6С. Хромомолибденовые составы 12МХ, 12ХМ, 15ХМ, 20ХМЛ подходят для использования при 450-550 °С, хромомолибденованадиевые 12Х1МФ, 15Х1М1Ф, 15Х1М1ФЛ – при температуре 550-600 °С. Их применяют при производстве турбин, запорной арматуры, корпусов аппаратов, паропроводов, трубопроводов, котлов.

Ферритная сталь изготавливается путем обжига и термообработки, за счет чего приобретает мелкозернистую структуру. Сюда относят марки Х28, Х18СЮ, 0Х17Т, Х17, Х25Т, 1Х12СЮ. хрома в таких сплавах 25-33 %.

Их применяют на производстве теплообменников, аппаратуры для химических производств (пиролизного оборудования), печного оборудования и прочих конструкций, которые работают длительное время при высокой температуре и не подвержены воздействию серьезных нагрузок.

Чем больше хрома в составе, тем выше температура, при которой сталь сохраняет эксплуатационные свойства. Жаростойкая ферритная сталь не обладает высокой прочностью, жаропрочностью, отличается хорошей пластичностью и неплохими технологическими параметрами.

Мартенситно-ферритная сталь содержит 10-14 % хрома, легирующие добавки ванадий, молибден, вольфрам. Материал используется при изготовлении элементов машин, паровых турбин, оборудования АЭС, теплообменников атомных и тепловых ЭС, деталей, предназначенных для длительной эксплуатации при 600 ºC. Марки сталей: 1Х13, Х17, Х25Т, 1Х12В2МФ, Х6СЮ, 2Х12ВМБФР.

Аустенитные стали отличаются широким применением в промышленности. Жаропрочностные и жаростойкие характеристики материала обеспечиваются за счет никеля и хрома, легирующих добавок (титан, ниобий).

Такие стали сохраняют технические свойства, стойкие к коррозии при воздействии температуры до 1000 ºC. Сравнительно со сталями ферритного класса, аустенитные сплавы обладают повышенной жаропрочностью, способностью к штамповке, вытяжке, свариванию.

Термическая обработка металлов осуществляется путем закалки при 1000–1050 °С.

Применение аустенитных марок.
Марки стали Применение жаропрочных сталей
08X18Н9Т, 12Х18Н9Т, 20Х25Н20С2, 12Х18Н9 Выхлопные системы, листовые, сортовые детали, трубы, работающие при невысокой нагрузке и температуре до 600–800 °С.
36Х18Н25С2 Печные контейнеры, арматура, эксплуатируемые при температуре до 1100 °С.
Х12Н20Т3Р, 4Х12Н8Г8МФБ Клапаны двигателей, детали турбин.

Аустенитно-ферритные стали отличаются повышенной жаропрочностью по сравнению с обычными высокохромистыми сплавами. Такие металлы применяются при изготовлении ненагруженных изделий, рабочая температура 1150 ºC. Из марки Х23Н13 изготавливают пирометрические трубки, из марки Х20Н14С2, 0Х20Н14С2 – печные конвейеры, резервуары для цементации, труб

  • Огромный ассортимент всех видов проката из наличия на складе.
  • Профессиональная логистика: — минимальное время доставки заказа – 1 час;

    — минимальная стоимость доставки – 800 руб. (сборный груз).

  • Профессиональные консультации по любой продукции и услуге.

Источник: https://alfa-stl.ru/zharoprochnye-stali-i-splavy/

Понравилась статья? Поделиться с друзьями:
Металлы и их обработка
-- Сайдб лев (липк) -->
Как мыть плиту из нержавейки

Закрыть
Для любых предложений по сайту: [email protected]