Какого цвета титан

Титан

Какого цвета титан

Титан Свойства атома Химические свойства Термодинамические свойства простого вещества Кристаллическая решётка простого вещества
Атомный номер 22
Внешний вид простого вещества
Атомная масса (молярная масса) 47,88 а. е. м. (г/моль)
Радиус атома 147 пм
Энергия ионизации (первый электрон) 657,8(6,82) кДж/моль (эВ)
Электронная конфигурация [Ar] 3d2 4s2
Ковалентный радиус 132 пм
Радиус иона (+4e)68 (+2e)94 пм
Электроотрицательность (по Полингу) 1,54
Электродный потенциал -1,63
Степени окисления 4, 3
Плотность 4,54 г/см?
Молярная теплоёмкость 25,1 Дж/(K·моль)
Теплопроводность 21.9 Вт/(м·K)
Температура плавления 1933 K
Теплота плавления 18.8 кДж/моль
Температура кипения 3560 K
Теплота испарения 422,6 кДж/моль
Молярный объём 10,6 см3/моль
Структура решётки гексагональная плотноупакованная (?-Ti)
Параметры решётки a=2,951 с=4,697 (?-Ti) A
Отношение c/a 1,587
Температура Дебая 380 K
Ti 22
47,88
[Ar]3d24s2
Титан

Титан — элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов, с атомным номером 22. Обозначается символом Ti (лат. Titanium). Простое вещество титан (CAS-номер: 7440-32-6) — лёгкий металл серебристо-белого цвета. Существует в двух кристаллических модификациях: ?-Ti с гексагональной плотноупакованной решёткой, -Ti с кубической объёмно-центрированной упаковкой, температура перехода α↔β 883 °C

История открытия элемента Титан

Схема атома титана

Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1789), выделил новую «землю» (окись) неизвестного металла, которую назвал менакеновой. В 1795 г.

немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — окислы одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л.

Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные окислы титана.

Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 термическим разложением паров иодида титана TiI4.

Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот, в соответствии со своими взглядами на химическую номенклатуру в противоход французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.

Однако согласно другой версии, публиковавшейся в журнале «Техника-Молодежи» в конце 80-х, новооткрытый металл обязан своим именем не могучим титанам из древнегреческих мифов, а Титании — королеве фей в германской мифологии (жена Оберона в шекспировском «Сне в летнюю ночь»). Такое название связано с необычайной «лёгкостью» (малой плотностью) металла.

Титан находится на 10-м месте по распространённости в природе. в земной коре 0,57 % по массе. В свободном виде не встречается. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiOSiO4, танталит (Fe,Mn)2+Ta2O6 и манганотанталит MnT2O6. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.

Запасы и добыча

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтвержденные запасы диоксида титана (без России) составляют около 800 млн т.[2].

На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т.

При современных темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн.

Крупнейший в мире производитель титана — российская компания «ВСМПО-АВИСМА».

Получение

Брусок кристаллического титана (чистота 99,995 %, вес ?283 г, длина ?14 см, диаметр ?25 мм), изготовленный на заводе «Уралредмет» иодидным методом ван Аркеля и де Бура

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4: TiO2 + 2C + 2Cl2 =TiCl4 + 2CO

Образующиеся пары TiCl4 при 850 °C восстанавливают Mg: TiCl4+ 2Mg = 2MgCl2+ Ti

Полученную титановую «губку» переплавляют и очищают. Ильменитовые концентраты восстанавливают в электродуговых печах с последующим хлорированием возникающих титановых шлаков. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

Физические свойства

Титан — легкий серебристо-белый металл.

Существует в двух кристаллических модификациях: ?-Ti с гексагональной плотноупакованной решёткой (a=2,951 A; с=4,697 A; z=2; пространственная группа C6mmc), ?-Ti с кубической объёмноцентрированной упаковкой (a=3,269 A; z=2; пространственная группа Im3m), температура перехода ?-? 883 °C, ?H перехода 3,8 кДж/моль. Точка плавления 1671 °C, точка кипения 3260 °C, плотность ?-Ti и ?-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см?, атомная плотность 5,71×1022 ат/см³. Пластичен, сваривается в инертной атмосфере.

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей пленкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Титановая пыль имеет свойство взрываться. Температура вспышки 400°С.

Химические свойства

Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок горит на воздухе.

Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF,H3PO4 и концентрированной H2SO4).

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой HF он взаимодействует благодаря образованию комплексного аниона [TiF6]2-.

При нагревании на воздухе до 1200°C Ti загорается с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2 амфотерны.

TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанат: TiO2+K2CO3=K2TiO3+CO2.

При нагревании Ti взаимодействует с галогенами. Тетрахлорид титана TiCl4 при обычных условиях — желтоватая, сильно дымящая на воздухе жидкость, что объясняется сильным гидролизом TiCl4 содержащимися в воздухе парами воды и образованием мельчайших капелек HCl и взвеси гидроксида титана.

Восстановлением TiCl4 водородом, Al, Si, другими сильными восстановителями, получен трихлорид и дихлорид титана TiCl3 и TiCl2 — твердые вещества с сильно восстановительными свойствами. Ti взаимодействует с Br2 и I2.

С N2 выше 400 °C титан образует нитрид TiNx(x=0,58-1,00). При взаимодействии титана с C образуется карбид титана TiCx (x=0,49-1,00).

При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHх (x=1,0). При нагревании эти гидриды разлагаются с выделением H2. Титан образует сплавы со многими металлами.

Применение

Часы из титанового сплава

В виде сплавов

  • Металл применяется в химической промышленности (реакторы, трубопроводы, насосы), лёгких сплавах, остеопротезах. Является важнейшим конструкционным материалом в авиа-, ракето-, кораблестроении.
  • Используется в художественном литье[5]
  • Титан является легирующей добавкой в некоторых марках стали.
  • Нитинол (никель-титан) — сплав, обладающий памятью формы, применяемый в медицине и технике.
  • Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.

В виде соединений

  • Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171.
  • Титанорганические соединения (напр. тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности.
  • Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки или покрытий.
  • Диборид титана — важный компонент сверхтвердых материалов для обработки металлов.
  • Нитрид титана применяется для покрытия инструментов.
  • Титанат бария BaTiO3, титанат свинца PbTiO3 и ряд других титанатов —- сегнетоэлектрики.

Анализ рынков потребления

В 2005 компания Titanium Corporation опубликовала следующую оценку потребления титана в мире:

60 % — краска; 20 % — пластик; 13 % — бумага;

7 % — машиностроение.

Цены

15-25 $ за килограмм, в зависимости от чистоты.

Чистота и марка чернового титана (титановой губки) обычно определяется по степени её пластичности.

Физиологическое действие

Нитрид титана

Источник: http://himsnab-spb.ru/article/ps/ti

Титан — сплав и марки

Какого цвета титан

Титан (Titanium; обозначается символом Ti) — элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 22.

Простое вещество титан — лёгкий прочный металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883°C. Температура плавления 1660±20°C. Титан имеет твёрдость по Бринеллю 175 МПа.

Титан находится на 10-м месте по распространённости в природе. в земной коре — 0,57% по массе, в морской воде — 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается.

Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим восстановлением из четырёххлористого титана металлическим магнием. Полученная при этом титановая губка маркируется по твердости специально выплавленных из неё образцов. Полученный в результате последовательного дробления губки, прессования, спекания и переплавки брикетов технический титан маркируется в зависимости от содержания примесей.

Поэтому содержание каждой из этих примесей ограничивается ~0,02-0,06%. Аналогично, но в меньшей степени, на свойства влияют железо и кремний. Особо вредная примесь в титане и однофазных а-сплавах титана — водород. При наличии водорода по границам зерен выделяются тонкие хрупкие пластины гидридной фазы, вызывая значительную хрупкость. Водородная хрупкость наиболее опасна в сварных конструкциях из-за наличия в них внутренних напряжений.

Допустимое содержание водорода в техническом титане и однофазных сплавах находится в пределах 0,008-0,012%.

Основные свойства титана

  • Цвет: серебристо-белый
  • Плотность: 4,54 г/см³
  • Температура плавления: 1668°С
  • Температура кипения: 3260°С
  • Теплопроводность: 21.9 Вт/(м·К)
  • Атомный номер: 22
  • Атомная масса: 47,9
  • Удельная теплота плавления: 358 кДж/кг
  • Удельная теплоемкость (при 20°С): 0,54 кДж/(кг.°С)
  • Модуль упругости: 112 ГПа

Механические свойства титана в большой степени зависят от содержания примесей, особенно Н, О, N и С, образующих с титаном твердые растворы внедрения и промежуточные фазы: гидриды, оксиды, нитриды и карбиды.

Небольшое содержание кислорода, азота, углерода повышает твердость и прочность, но при этом значительно уменьшается пластичность, снижается коррозионная стойкость, ухудшается свариваемость, способность к пайке и штампуемость. Титан обладает высокими прочностью и удельной прочностью в условиях глубокого холода.

Технический титан хорошо обрабатывается давлением при 20-25°С и повышенных температурах. Из него изготовляют все виды прессованного и катаного полуфабриката (листы, трубы, проволоку, поковки и др.). Ковку проводят при температуре 1000-750°С, горячую прокатку — на 100°С ниже температуры ковки.

Горячей прокаткой получают листы толщиной более 6 мм, листы меньшей толщины изготовляют холодной прокаткой или с нагревом до 650-700°С. Температура прессования 950-1000°С. Титан хорошо сваривается аргонодуговой и всеми видами контактной сварки. Сварной шов обладает хорошим сочетанием прочности и пластичности.

Прочность шва составляет 90% прочности основного металла.

Титан плохо обрабатывается резанием, налипает на инструмент, что приводит к его быстрому износу. Для обработки титана требуется инструмент из быстрорежущей стали и твёрдых сплавов, малые скорости резания при большой подаче и глубине резания, интенсивное охлаждение. Недостатком титана является также низкая антифрикционность.

Титановые сплавы

Достоинством титановых сплавов по сравнению с титаном являются более высокие прочность и жаропрочность при достаточно хорошей пластичности, высокой коррозионной стойкости и малой плотности.

Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении. Самым распространённым в мире титановым сплавом является сплав Ti-6Al-4V, который в российской классификации имеет обозначение ВТ6.

Для изготовления деталей методами порошковой технологии используют сплавы ВТ5, ВТ5-1, ОТ4, ВТЗ-1 и другие.

По технологии изготовления титановые сплавы подразделяются на деформируемые, литейные и порошковые. По механическим свойствам титановые сплавы подразделяются на сплавы нормальной прочности, высокопрочные, жаропрочные, повышенной пластичности. По способности упрочняться с помощью термической обработки они делятся на упрочняемые и неупрочняемые термической обработкой; по структуре в отожженном состоянии они классифицируются на а-, псевдо-а, а + р, псевдо-р и р-сплавы.

Купить титан

Применение титановых сплавов

  • В авиастроении, ракетостроении: каркасные детали, обшивка, топливные баки, детали реактивных двигателей, диски и лопатки компрессоров, детали воздухозаборника, детали корпусов ракетных двигателей второй и третьей ступени и т.д.
  • В судостроении: обшивка корпусов судов и подводных лодок, сварные трубы, гребные винты, детали насосов и др.
  • В химической промышленности: реакторы для агрессивных сред, насосы, змеевики, центрифуги и др.
  • В гальванотехнике: ванны для хромирования, анодные корзины, теплообменники, трубопроводы, подвески и др.
  • В газовой и нефтяной промышленности: фильтры, седла клапанов, резервуары, отстойники и др.
  • В криогенной технике: детали холодильников, насосов компрессоров, теплообменники и др.
  • В пищевой промышленности: сепараторы, холодильники, ёмкости для продуктов, цистерны и др.
  • В медицинской промышленности: инструмент, наружные и внутренние протезы, внутрикостные фиксаторы, зажимы и др.

Марки и классы титана

Титановая губка
ТГ-100 ТГ-110 ТГ-120 ТГ-130 ТГ-150
ТГ-90 ТГ-Тв
Титан технический
ВТ1-0 ВТ1-00 ВТ1-1
Титановый литейный сплав
ВТ14Л ВТ1Л ВТ20Л ВТ21Л ВТ3-1Л
ВТ5Л ВТ6Л ВТ9Л
Титановый деформируемый сплав
АТ-6 ВТ14 ВТ15 ВТ16 ВТ20
ВТ22 ВТ23 ВТ3-1 ВТ5 ВТ5-1
ВТ6 ВТ6С ВТ9 ОТ4 ОТ4-0
ОТ4-1 ПТ3В ПТ7М ТС6

Источник: https://www.sect.ru/info/nonferrous-metals/titanium-alloys-and-grades/

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан – это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него.

ЭТО ИНТЕРЕСНО:  Для чего используется чугун

Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы.

По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза — меди и железа. Ещё один важный показатель – это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.

Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм.

Из титана изготавливают такие виды проката: титановая лента, титановая проволока, титановые трубы, титановые втулки, титановый круг, титановый пруток.

Химические свойства

Чистый титан – это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии.

Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение.

Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.

Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.

Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород.

При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.

Способы получения

Титан является одним из самых распространённых элементов на Земле. его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%).

Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.

Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

1. Магниетермический процесс

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде.

Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот.

Губчатый титан переплавляют для получения качественного металла.

2. Гидридно-кальциевый метод

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

3. Электролизный метод

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

4. Йодидный метод

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Применение титана

Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана – это прекрасный материал для самолётостроения, ракетостроения и судостроения.

Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.

Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов. В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.

Источник: https://cu-prum.ru/titan1.html

Как отличить титан от других металлов

Какого цвета титан

Многих интересует немного загадочный и не до конца изученный титан — металл, свойства которого отличаются некоторой двоякостью. Металл и самый прочный, и самый хрупкий.

Самый прочный и самый хрупкий металл

Его открыли двое ученых с разницей в 6 лет — англичанин У. Грегор и немец М. Клапрот.

Название титана связывают, с одной стороны, с мифическими титанами, сверхъестественными и бесстрашными, с другой стороны, с Титанией — королевой фей.

Это один из самых распространенных в природе материалов, но процесс получения чистого металла отличается особой сложностью.

Свойства титана

22 химический элемент таблицы Д. Менделеева Titanium (Ti) относится к 4 группе 4 периода.

Цвет титана серебристо-белый с выраженным блеском. Его блики переливаются всеми цветами радуги.

Это один из тугоплавких металлов. Он плавится при температуре +1660 °С (±20°). Титан отличается парамагнитностью: он не намагничивается в магнитном поле и не выталкивается из него.Металл характеризуется низкой плотностью и высокой прочностью.

Но особенность этого материала заключается в том, что даже минимальные примеси других химических элементов кардинально изменяют его свойства.

При наличии ничтожной доли других металлов титан теряет свою жаропрочность, а минимум неметаллических веществ в его составе делают сплав хрупким.

Эта особенность обуславливает наличие 2 видов материала: чистого и технического.

  1. Титан чистого вида используют там, где требуется очень легкое вещество, выдерживающее большие нагрузки и сверхвысокие температурные диапазоны.
  2.  Технический материал применяется там, где ценятся такие параметры, как легкость, прочность и устойчивость к коррозии.

Вещество обладает свойством анизотропности. Это означает, что металл может изменять свои физические характеристики, исходя из приложенных усилий. На эту особенность следует обращать внимание, планируя применение материала.

Титан теряет прочность при малейшем присутствии в нем примесей других металлов

Проведенные исследования свойств титана в нормальных условиях подтверждают его инертность.

Вещество не реагирует на элементы, находящиеся в окружающей атмосфере.Изменение параметров начинается при повышении температуры до +400°С и выше.

Титан вступает в реакцию с кислородом, может воспламеняться в азоте, впитывает газы.

Эти свойства затрудняют получение чистого вещества и его сплавов. Производство титана основано на применении дорогостоящей вакуумной аппаратуры.

Титан и конкуренция с другими металлами

Этот металл постоянно сравнивают с алюминием и сплавами железа. Многие химические свойства титаназначительно лучше, чем у конкурентов:

  1. По механической прочности титан превосходит железо в 2 раза, а алюминий в 6 раз. Прочность его увеличивается при снижении температуры, чего не отмечается у конкурентов.
    Антикоррозионные характеристики титана значительно превышают показатели других металлов.
  2. При температурах окружающей среды металл абсолютно инертен. Но при повышении температуры свыше +200°С вещество начинает поглощать водород, изменяя свои характеристики.
  3. При более высоких температурах титан вступает в реакции с другими химическими элементами. Он обладает высокой удельной прочностью, что в 2 раза превосходит свойства лучших сплавов железа.
  4. Антикоррозионные свойства титана значительно превышают показатели алюминия и нержавеющей стали.
  5. Вещество плохо проводит электричество. Титан имеет удельное электросопротивление в 5 раз выше, чем у железа, в 20 раз, чем у алюминия, и в 10 раз выше, чем у магния.
  6. Титан характеризуется низкой теплопроводностью, это обусловлено низким коэффициентом температурного расширения. Она меньше в 3 раза, чем у железа, и в 12, чем у алюминия.

Какими способами получают титан?

Материал занимает 10 место по распространению в природе. Существует около 70 минералов, содержащих титан в виде титановой кислоты или его двуокиси. Наиболее распространенные из них и содержащие высокий процент производных металла:

  • ильменит;
  • рутил;
  • анатаз;
  • перовскит;
  • брукит.

Основные залежи титановых руд находятся в США, Великобритании, Японии, большие месторождения их открыты в России, Украине, Канаде, Франции, Испании, Бельгии.

Добыча титана — дорогой и трудозатратный процесс

Получение металла из них стоит очень дорого. Ученые разработали 4 способа производства титана, каждый из которых рабочий и эффективно используется в промышленности:

  1. Магниетермический способ. Добытое сырье, содержащее титановые примеси, перерабатывают и получают диоксид титана. Это вещество подвергается хлорированию в шахтных или солевых хлораторах при повышенном температурном режиме. Процесс очень медленный, ведется в присутствии углеродного катализатора. При этом твердый диоксид переводится в газообразное вещество — тетрахлорид титана. Полученный материал восстанавливается магнием или натрием. Сплав, образовавшийся при реакции, подвергают нагреванию в вакуумной установке до сверхвысоких температур. В результате реакции происходит испарение магния и его соединений с хлором. В конце процесса получают губкоподобный материал. Его плавят и получают титан высокого качества.
  2. Гидридно-кальциевый способ. Руду подвергают химической реакции и получают гидрид титана. Следующий этап — разделение вещества на составляющие. Титан и водород выделяют в процессе нагревания в вакуумных установках. По окончании процесса получают оксид кальция, который отмывают слабыми кислотами. Первые два способа относятся к промышленному производству. Они позволяют получать в кратчайшие сроки чистый титан с относительно небольшими издержками.
  3. Электролизный метод. Титановые соединения подвергают воздействию током большой силы. В зависимости от исходного сырья, соединения разделяются на составляющие: хлор, кислород и титан.
  4. Йодидный способ или рафинирование. Полученный из минералов диоксид титана обдают парами йода. В результате реакции образуется йодид титана, который нагревают до высокой температуры — +1300+1400°С и воздействуют на него электрическим током. При этом из исходного материала выделяются составляющие: йод и титан. Металл, полученный данным способом, не имеет примесей и добавок.

  Анализатор драгоценных металлов

Области применения

Применение титана зависит от степени его очистки от примесей. Наличие даже небольшого количества других химических элементов в составе сплава титана кардинально меняет его физико-механические характеристики.

Титан с некоторым количеством примесей называется техническим. Он имеет высокие показатели коррозийной стойкости, это легкий и очень прочный материал. От этих и других показателей зависит его применение.

  • В химической промышленности из титана и его сплавов изготавливают теплообменники, различного диаметра трубы, арматуру, корпуса и детали для насосов различного назначения. Вещество незаменимо в местах, где требуются высокая прочность и стойкость к кислотам.
  • На транспорте титан используют для изготовления деталей и агрегатов велосипедов, автомобилей, железнодорожных вагонов и составов. Применение материала уменьшает вес подвижных составов и автомобилей, придает легкость и прочность велосипедным деталям.
  • Большое значение титан имеет в военно-морском ведомстве. Из него изготавливают детали и элементы корпусов для подводных лодок, пропеллеры для лодок и вертолетов.
  • В строительной промышленности применяется сплав цинк-титан. Он используется как отделочный материал для фасадов и кровель. Этот очень прочный сплав имеет важное свойство: из него можно изготавливать архитектурные детали самой фантастической конфигурации. Он может принимать любую форму.
  • В последнее десятилетие титан широко применяют в нефтедобывающей отрасли. Сплавы его применяют при изготовлении оборудования для сверхглубокого бурения. Материал используется для изготовления оборудования для добычи нефти и газа на морских шельфах.

Источник: https://masakarton.com/kak-otlichit-titan-ot-drugih-metallov/

История

Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1789), выделил новую «землю» (окись) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном.

Спустя два года Клапрот установил, что рутил и менакеновая земля — окислы одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные окислы титана.
Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус.

Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI4.

Происхождение названия

Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот, в соответствии со своими взглядами на химическую номенклатуру в противоход французской химической школе, где элемент старались называть по его химическим свойствам.

Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.

Однако согласно другой версии, публиковавшейся в журнале «Техника-Молодежи» в конце 1980-х, новооткрытый металл обязан своим именем не могучим титанам из древнегреческих мифов, а Титании — королеве фей в германской мифологии (жена Оберона в шекспировском «Сне в летнюю ночь»). Такое название связано с необычайной «лёгкостью» (малой плотностью) металла.

ЭТО ИНТЕРЕСНО:  Сплав доре что это

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд.

Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов.

Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:
TiO2 + 2C + 2Cl2 =TiCl2 + 2CO

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

TiCl4+ 2Mg = 2MgCl2+ Ti

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

Физические свойства

Титан — легкий серебристо-белый металл. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмноцентрированной упаковкой, температура полиморфного превращения α↔β 883 °C.

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C. Титановая стружка пожароопасна.

Источник: http://edu.glavsprav.ru/info/ti

Цвет титан это какой

Титан обладает высокой прочностью, хорошей коррозионной стойкостью и при этом имеет сравнительно небольшую массу, что делает его применение незаменимым в областях, где важны хорошие механические свойства изделий одновременно с их массой. На странице представлено описание данного металла: физические, химические свойства, области применения, марки и его сплавов, виды продукции.

В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам.

Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа.

Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.

Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы.

С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к.

в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10 -8 до 80·10 -6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

Марки титана и сплавов

Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей.

Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб.

Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св.

В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо.

Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С.

Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С.

Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки.

Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С.

Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий.

Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия.

Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла.

Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С.

Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.

Достоинства / недостатки

    Достоинства:
  • малая плотность (4500 кг/м 3 ) способствует уменьшению массы выпускаемых изделий;
  • высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
  • необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
  • удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
    Недостатки:
  • высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
  • активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
  • трудности вовлечения в производство титановых отходов;
  • плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
  • высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
  • плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
  • большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.

Источник: https://crast.ru/instrumenty/cvet-titan-jeto-kakoj

Титан в природе (0,6% в Земной коре)

История открытия этого элемента связана с определенными трудностями. В конце 18 века, немецкие ученые получили неизвестный материал, который был назван титаном. Название этого металла связано исключительно со стандартами химического наименования — о его свойствах было известно немного.

Подробные исследования физико-химических характеристик титана стали возможны лишь в середине 20 века, когда был получен химически чистый материал для исследований.

Тогда же и были установлены его удивительная прочность и ряд других качеств, благодаря которым титан стал одним из самых востребованных металлов в промышленности.

Основные характеристики

Является типичным представителем переходных металлов, внешне напоминает очищенное железо или высокоуглеродистую сталь. Очень прочен и, в тоже время, пластичен — при работе с ним возникает опасность налипания титана на поверхность инструментов. Чистый титан на воздухе довольно быстро окисляется с образованием защитной пленки, что обуславливает характерный тусклый блеск этого металла.

Примечательно, что в плане своей геохимии, титан очень схож с алюминием. В чистом виде не встречается, основная природная форма — оксиды, а также соединения кальция, различные соли и руды. Практически всегда содержится в бокситах, что позволяет проводить одновременную добычу титана и алюминия.

Физико-химические свойства

Выделение чистого титана в конце 20 века позволило провести ряд детальных исследований этого необычного металла, что привело к настоящей сенсации. Титан обладал наивысшими показателями прочности среди всех известных тогда элементов, при этом охотно взаимодействовал с большинством реагентов. В настоящий момент физические свойства титана изучены практически досконально:

  • Температура плавления — 1670 0С;
  • Средняя плотность — 4,5 г/см3;
  • Высокие показатели гибкости и вязкости;

Чистый титан считается довольно хрупким металлом — в нормальных условиях его прочность почти в два раза ниже, чем таковая у никеля или железа. Однако в промышленности в основном используются жаропрочные сплавы на титановой основе, которые в определенных температурных пределах превосходят по прочности и упругости все известные современные металлические соединения.

По своим химическим показателям титан относится к активным переходным металлом. Охотно вступает в реакцию с кислородом с образованием поверхностного слоя из оксида титана. Этим объясняется его коррозионная стойкость, которая характерна для всех неорганических сред. Будучи измельченным в мелкую пыль является огнеопасным веществом, легко воспламеняется с выделением большого количества энергии.

Распространение в природе

Титан является весьма активным элементом, охотно вступает в спонтанные реакции с кислородом и солями. По этой причине, в земной коре химически чистый титан никогда не встречается.

Кроме того, природная аллотропная модификация этого элемента четырехвалентна, из-за чего основная форма титана — оксиды, а также соли железа, кальция и алюминия.

Добыча ведется совместно с добычей других металлов, основной метод выделения титана — химическая очистка по методу кислотного травления с дальнейшей обработкой и осаждением.

По примерным оценкам, в состав земного грунта входит около 0,6% титана в чистом эквиваленте, что ставит его на десятое место по распространенности. Современные методы добычи титана позволяют использовать его в промышленных масштабах, ежегодные объемы производства оценивается в 5 миллионов тонн.

Сфера промышленного и прикладного применения

Большая часть всего получаемого титана используется для нужд машиностроения, авиационной и судостроительной промышленности. В этом качестве, титан используется наравне с алюминием и железом, что объясняется его чрезвычайно высокими прочностными характеристиками в сочетании с низким весом и плотностью.

Наибольшую известность титан получил в авиационной промышленности, где применяется для изготовления реактивных двигателей, несущих конструкций и деталей обшивки. Кроме того, титан используется во всех сферах, где необходим материал с высокой коррозионной стойкостью и жаропрочностью: химическая промышленность (изготовление емкостей и приборов), производство высокопрочных инструментов.

Источник: https://xn----8sbiecm6bhdx8i.xn--p1ai/%D1%82%D0%B8%D1%82%D0%B0%D0%BD.html

Предпочтительные марки титана в стоматологии

Многочисленные фундаментальные и прикладные исследования заявляют, что лучшим материалом для изготовления дентальных имплантатов является титан.

В России для производства различных конструкций используется технически чистый титан марок BT 1-0 и BT 1-00 (ГОСТ 19807−91), а за рубежом применяют так называемый «коммерчески чистый» титан, который делят на 4 марки (Grade 1−4 ASTM, ISO). Также применяется титановый сплав Ti-6Al−4V (ASTM, ISO), являющийся аналогом отечественного сплава BT-6. Все эти вещества различны по химическому составу и механическим свойствам.

Титан марки Grade 1,2,3 – не используется в стоматологии, т.к. слишком мягкий.

Преимущества чистого титана марки Grade 4 (СP4)

  • Лучшая биологическая совместимость
  • Отсутствие в составе токсичного ванадия (V)
  • Лучшая стойкость к коррозии
  • 100% отсутствие аллергических рекаций

По данным исследования научных статей, методических и презентационных публикаций зарубежных компаний, стандартов ASTM, ISO, ГОСТ имеются сравнительные таблицы свойств и состава титана разных марок.

Таблица 1. Химический состав титана по ISO 5832/II и ASTM F 67−89

Элемент Grade 1, % Grade 2, % Grade 3, % Grade 4, % Ti-6Al−4V, %
Азот 0,03 0,03 0,05 0,05 (0,05)
Углерод 0,1 0,1 0,1 0,1 (0,1)
Водород 0,015 0,015 0,015 0,015 (0,015)
Железо 0,2 0,3 0,3 0,5 (0,4)
Кислород 0,18 0,25 0,35 0,5 (0,4)** (0,2)
Алюминий нет нет нет нет (5,5−6,75)
Ванадий нет нет нет нет (3,5−4,5)
Титан остальное остальное остальное остальное остальное

** — Данные ISO и ASTM совпадают во многих пунктах, при их расхождении показатели ASTM приведены в скобках.

Таблица 2. Механические свойства титана по ISO 5832/II и ASTM F 67−89

Grade 1, МПа Grade 2, МПа Grade 3, МПа Grade 4, МПа Ti-6Al−4V, МПа
Предел прочности на растяжение 240 345 450 550 (895)
Предел текучести 170 230 (275) 300 (380) 440 (483) (830)

Таблица 3. Химический состав титановых сплавов по ГОСТ 19807−91

Элемент Титановый сплав ВТ 1−0, % Титановый сплав ВТ 1−00, % Титановый сплав ВТ-6, %
Азот 0,04 0,04 0,05
Углерод 0,07 0,05 0,1
Водород 0,01 0,008 0,015
Железо 0,25 0,15 0,6
Кислород 0,2 0,1 0,2
Алюминий нет нет 5,3−6,8
Ванадий нет нет 3,5−4,5
Цирконий нет нет 0,3
Другие примеси* 0,3 0,1 0,3
ЭТО ИНТЕРЕСНО:  Магнитятся волосы что делать

* В титане марки ВТ 1−00 допускается массовая доля алюминия не более 0,3%, в титане марки ВТ 1−0 — не более 0,7%.

Таблица 4. Механические свойства титановых сплавов по ГОСТ 19807−91

Показатели механических свойств Титановый сплав ВТ 1−0, МПа Титановый сплав ВТ 1−00, МПа Титановый сплав ВТ-6, МПа
Предел прочности на растяжение 200−400 400−550 850−1000***
Предел текучести 350 250 ***

** Данные приведены по ОСТ 1 90 173−75.
*** В доступной литературе данных не обнаружено.

Самым прочным из рассмотренных материалов является сплав Ti-6Al−4V (отечественный аналог ВТ-6). Увеличение прочности достигается за счет введения в его состав алюминия и ванадия. Однако, данный сплав относится к биоматериалам первого поколения и, несмотря на отсутствие каких-либо клинических противопоказаний, он используется все реже. Это положение приведено в аспекте проблем эндопротезирования крупных суставов.

С точки зрения лучшей биологической совместимости, более перспективными представляются вещества, относящиеся к группе «чистого» титана. Необходимо отметить, что когда говорят о «чистом» титане, имеют в виду одну из четырех марок титана, допущенных для введения в ткани организма в соответствии с международными стандартами. Как видно из приведенных выше данных, они различны по химическому составу, который, собственно, и определяет биологическую совместимость и механические свойства.

Важен также вопрос о прочности этих материалов. Лучшими характеристиками в этом отношении обладает титан класса 4.
При рассмотрении его химического состава можно отметить, что в титане этой марки увеличено содержание кислорода и железа. Принципиальным является вопрос: ухудшает ли это биологическую совместимость?

Увеличение кислорода, вероятно, не будет являться отрицательным.

Увеличение содержания железа на 0,3% в титане Grade 4 (по сравнению с Grade 1) может вызвать некоторые опасения, так как, по экспериментальным данным, железно (так же как и алюминий) при имплантации в ткани организма приводит к образованию вокруг имплантата соединительно-тканной прослойки, что является признаком недостаточной биоинертности металла. Кроме того, по тем же данным, железо подавляет рост органической культуры. Однако, как говорилось, приведенные выше данные касаются имплантации «чистых» металлов.

В данном случае важным является вопрос: возможен ли выход ионов железа через слой окиси титана в окружающие ткани, и если возможен, то с какой скоростью и каков из дальнейший метаболизм? В доступной литературе мы не встретили информации по этому поводу.

При сопоставлении зарубежных и отечественных стандартов можно отметить, что разрешенные для клинического применения в нашей стране титановые сплавы ВТ 1−0 и ВТ 1−00 практически соответствуют маркам «чистого» титана Grade 1 и 2.

Пониженное содержание кислорода и железа в этих марках приводит к снижению их прочностных свойств, что не может считаться благоприятным.

Хотя у титана марки ВТ 1−00 верхняя граница предела прочности на растяжение соответствует аналогичному показателю Grade 4, предел текучести при этом у отечественного сплава почти в два раза ниже. Кроме того, в его состав может входить алюминий, что, как указывалось выше, нежелательно.

При сопоставлении зарубежных стандартов можно отметить, что американский стандарт является более строгим, и стандарты ISO ссылаются на американские в ряде пунктов. Кроме того, делегация США выразила несогласие при утверждении стандарта ISO в отношении титана, используемого в хирургии.

Таким образом, можно утверждать, что:
Лучшим материалом для изготовления дентальных имплантатов, на сегодняшний день, является «чистый» титан класса 4 по стандарту ASTM, так как он:

  • не содержит токсичного ванадия, как, например, сплав Ti-6Al−4V;
  • наличие в его составе Fe (измеряемого в десятых долях %) не может считаться отрицательным, так как даже в случае возможного выхода ионов железа в окружающие ткани воздействие их на ткани не является токсичным, как у ванадия;
  • титан класса 4 обладает лучшими прочностными свойствами по сравнению с другими материалами группы «чистого» титана;

Источник: https://med-indigo.ru/education/article/predpochtitelnye-marki-titana-v-stomatologii/

Особенности титана как металла с превосходной коррозийной стойкостью

Наиболее значимыми для народного хозяйства были и остаются сплавы и металлы, объединяющие легкость и прочность. Титан относится именно к этой категории материалов и, кроме того, обладает превосходной коррозийной стойкостью.

Титан – переходный металл 4 группы 4 периода. Молекулярная масса его составляет всего 22, что указывает на легкость материала. При этом вещество отличается исключительной прочностью: среди всех конструкционных материалов именно у титана самая высокая удельная прочность. Цвет серебристо-белый.

Что такое титан, расскажет видео ниже:

Титан довольно распространен – по содержанию в земной коре занимает 10 место. Однако выделить действительно чистый металл удалось лишь в 1875 году. До этого вещество либо получали с примесями, либо называли металлическим титаном его соединения. Эта путаница привела к тому, что соединения металла стали использоваться значительно раньше, чем сам металл.

Обусловлено это особенностью материала: самые ничтожные примеси заметно влияют на свойства вещества, порой полностью лишая присущих ему качеств.

Так, самая небольшая доля других металлов лишает титан жаропрочности, что является одним из его ценных качеств. А небольшая добавка неметалла превращает прочный материал в хрупкий и непригодный к применению.

Эта особенность сразу же разделила получаемый металл на 2 группы: технический и чистый.

  • Первый применяют в тех случаях, когда более всего нужна прочность, легкость и коррозийная стойкость, так как последнее качество титан не теряет никогда.
  • Материал большой чистоты используется там, где нужен материал, работающий при очень больших нагрузках и больших температурам, но при этом отличающийся легкостью. Это, конечно, авиа- и ракетостроение.

Вторая особая черта вещества – анизотропность. Некоторые его физические качества изменяются в зависимости от приложения сил, что необходимо учитывать при применении.

При нормальных условиях металл инертен, не корродирует ни в морской воде, ни в морском или городском воздухе. Более того, это самое биологически инертное вещество из известных, благодаря чему в медицине широко применяются титановые протезы и имплантаты.

В то же время при повышении температуры он начинает реагировать с кислородом, азотом и даже водородом, а в жидком виде впитывает газы. Эта неприятная особенность крайне затрудняет и получение самого металла, и изготовление сплавов на его основе.

Последнее возможно только при использовании вакуумной аппаратуры. Сложнейший процесс производства превратил довольно распространенный элемент в весьма дорогостоящий.

Связь с другими металлами

Титан занимает промежуточное положение между двумя другими известнейшими конструкционными материалами – алюминием и железом, вернее говоря, сплавами железа. По многим параметрам металл превосходит «конкурентов»:

  • механическая прочность титана в 2 раза выше, чем у железа, и в 6 раз, чем у алюминия. При этом прочность при снижении температуры возрастает;
  • коррозийная стойкость намного выше, чем у железа и даже алюминия;
  • при нормальной температуре титан инертен. Однако при повышении до 250 С, начинает поглощать водород, что сказывается на свойствах. По химической активности он уступает магнию, но, увы, превосходит железо и алюминий;
  • металл намного слабее проводит электричество: его удельное электросопротивление выше, чем у железа 5 раз, выше, чем у алюминия в 20 раз, и выше, чем у магния в 10 раз;
  • теплопроводность также намного ниже: меньше, чем 1 железа в 3 раза, и меньше, чем у алюминия в 12 раз. Однако это свойство обуславливает очень низкий коэффициент температурного расширения.

Плюсы и минусы

На деле недостатков у титана множество. Но сочетание прочности и легкости настолько востребовано, что ни сложный способ изготовления, ни необходимость исключительной чистоты не останавливают потребителей металла.

К несомненным плюсам вещества относятся:

  • низкая плотность, что означает очень небольшой вес;
  • исключительная механическая прочность как самого металла титан, так и его сплавов. При повышении температуры титановые сплавы превосходят все сплавы алюминия и магния;
  • соотношение прочности и плотности – удельная прочность, достигает 30–35, что почти в 2 раза выше, чем у лучших конструкционных сталей;
  • на воздухе титан подлежит покрытию тонким слоем оксида, который и обеспечивает превосходную коррозийную стойкость.

Недостатков у металла тоже хватает:

  • стойкость к коррозии и инертность относится только к продукции с неактивной поверхностью. Титановая пыль или стружка, например, самовоспламеняются и сгорают с температурой в 400 С;
  • очень сложный способ получения металла титан обеспечивает очень высокую стоимость. Материал намного дороже железа, алюминия или меди;
  • способность впитывать атмосферные газы при повышении температуры требует применения при плавке и получении сплавов вакуумной аппаратуры, что тоже заметно увеличивает стоимость;
  • титан отличается плохими антифрикционными свойствами – на трение он не работает;
  • металл и его сплавы склонны к водородной коррозии, предотвратить которую сложно;
  • титан плохо поддается обработке резанием. Сварка его тоже затруднена из-за фазового перехода во время нагревания.

Далее рассмотрены состав и структура титана.

Лист титана

Свойства и характеристики

Физические качества вещества сильно зависят от чистоты. Справочные данные описывают, конечно, чистый металл, но характеристики технического титана могут заметно отличаться.

  • Плотность металла уменьшается при нагревании от 4,41 до 4,25 г/куб см. Фазовый переход изменяет плотность лишь на 0,15%.
  • Температура плавления металла – 1668 С. температуру кипения – 3227 С. Титан является тугоплавким веществом.
  • В среднем предел прочности на растяжение составляет 300–450 МПа, однако это показатель можно увеличить до 2000 МПА, прибегнув к закалке и старению, а также введению дополнительных элементов.
  • По шкале НВ твердость составляет 103 и это не предел.
  • Теплоемкость титана невелика – 0,523 кдж/(кг·К).
  • Удельное электросопротивление — 42,1·10-6 ом·см.
  • Титан является парамагнитом. При снижении температуры его магнитная восприимчивость уменьшается.
  • Металлу в целом свойственны пластичность и ковкость. Однако на эти свойства сильно влияют кислород и азот в сплаве. Оба элемента придают материалу хрупкость.

Вещество устойчиво ко многим кислотам, включая азотную, серную в низкой концентрации и практически все органические за исключением муравьиной. Это качество обеспечивает титану востребованность в химической, нефтехимической, бумажной промышленности и так далее.

Структура и состав

Титан – хоть и переходный металл, да и удельное электросопротивление имеет низкое, все же, является металлом и проводит электрический ток, а это означает упорядоченную структуру. При нагревании до определенной температуры структура изменяется:

  • до 883 С устойчивой является α-фаза с плотностью в 4,55 г/куб. см. Она отличается плотной гексагональной решеткой. Кислород растворяется в этой фазе с образованием растворов внедрения и стабилизирует α-модификацию – отодвигает температурный предел;
  • выше 883 С стабильна β-фаза с объемно-центрированной кубической решеткой. Плотность его несколько меньше – 4,22 г/куб. см. Эту структуру стабилизирует водород – при его растворении в титане также образуются растворы внедрения и гидриды.

Эта особенность очень затрудняет работу металлурга. Растворимость водорода при охлаждении титана резко уменьшается, и в сплаве выпадает гидрид водорода – γ-фаза.

Он становится причиной появления холодных трещин при сварке, поэтому производителям приходится применять дополнительные усилия после плавки металла, чтобы очистить его от водорода.

О том, где можно найти и как сделать титан, расскажем ниже.

Данное видео посвящено описанию титана как металла:

Титан весьма распространен, так что с рудами, содержащими металл, причем в довольно больших количествах, затруднений не возникает. Исходным сырьем выступает рутил, анатаз и брукит – диоксиды титана в разной модификации, ильменит, пирофанит – соединения с железом, и так далее.

А вот технология плавки титана сложна и требует дорогостоящей аппаратуры. Способы получения несколько отличаются, поскольку состав руды различен. Например, схема получения металла из ильменитовых руд выглядит так:

  • получение титанового шлака – породу загружают в электродуговую печь вместе с восстановителем – антрацитом, древесным углем и прогревают до 1650 С. При этом отделяют железо, которое идет на получение чугуна и диоксида титана в шлаке;
  • шлак хлорируют в шахтных или солевых хлораторах. Суть процесса сводится к тому, чтобы перевести твердый диоксид в газообразный тетрахлорид титана;
  • в печах сопротивления в специальных колбах металл восстанавливают натрием или магнием из хлорида. В итоге получают простую массу – титановую губку. Это технический титан вполне пригодный для изготовления химической аппаратуры, например;
  • если же требуется более чистый металл, прибегают к рафинированию – при этом металл реагирует с йодом с тем, чтобы получить газообразный йодид, а последний под действием температуры – 1300–1400 С, и электрического тока, разлагается, высвобождая чистый титан. Электрический ток подается через натянутую в реторте титановую проволоку, на которую и осаждается чистое вещество.

Чтобы получить титан в слитках, титановую губку переплавляют в вакуумной печи, чтобы предотвратить растворение водорода и азота.

Цена титана за 1 кг очень высока: в зависимости от степени чистоты металл стоит от 25 до 40 $ за 1 кг. С другой стороны, корпус кислотоупорного аппарата из нержавеющей стали обойдется в 150 р. и прослужит не более 6 месяцев. Титановый будет стоить около 600 р, но эксплуатируется в течение 10 лет. Много производств титана есть в России.

Влияние степени очистки на физико-механические качества заставляет рассматривать применение титана именно с этой точки зрения. Так, технический, то есть, не самый чистый металл обладает превосходной коррозийной стойкостью, легкостью и прочностью, что и обуславливает его применение:

  • химическая промышленность – теплообменники, трубы, корпуса, детали насосов, арматура и так далее. Материал незаменим на участках, где требуется стойкость к кислотам и прочность;
  • транспортная промышленность – вещество используется для изготовления средств передвижения от железнодорожных составов до велосипедов. В первом случае, металл обеспечивает меньшую массу составов, что делает тягу более эффективной, в последнем – придает легкость и прочность, не зря ведь титановая велосипедная рама считается лучшей;
  • военно-морское дело – из титана изготавливают теплообменники, выхлопные глушители для подводных лодок, клапан, пропеллеры и так далее;
  • в строительстве широко применяют цинк-титан – прекрасный материал для отделки фасадов и кровель. Вместе с прочностью сплав обеспечивает еще одно важное для архитектуры достоинство – возможность придавать изделиям самую причудливую конфигурацию, способность к формообразованию у сплава неограниченная.

Чистый металл, кроме того, является очень стойким к высоким температурам и сохраняет при этом прочность. Применение очевидно:

  • ракето- и авиастроение – из него изготавливают обшивку. Детали двигателей, элементы крепления, части шасси и так далее;
  • медицина – биологическая инертность и легкость делает титан куда более перспективным материалом при протезировании, вплоть до сердечных клапанов;
  • криогенная техника – титан является одним из немногих веществ, которые при снижении температуры становятся лишь прочнее и не утрачивает пластичности.

Титан – конструкционный материал самой высокой прочности при такой легкости и пластичности. Эти уникальные качества обеспечивают ему все более важную роль в народном хозяйстве.

О том, где взять титан для ножа, расскажет видео ниже:

Источник: http://stroyres.net/metallicheskie/vidyi/tsvetnyie/titan/ponyatie-osobennost.html

Понравилась статья? Поделиться с друзьями:
Металлы и их обработка
-- Сайдб лев (липк) -->
Что используется для пайки

Закрыть
Для любых предложений по сайту: [email protected]