Что производят из алюминия

Свойства алюминия. Методы добычи металла алюминия, применение

Алюминий – один из самых распространенных металлов в земной коре. Обладает серебристо-белым окрасом, легкой массой и высокой электропроводностью. Плавится металл при температуре 660 °С. Среди плюсов отмечают низкую плотность, достаточно высокую прочность, отличную проводимость тепла, стойкость к коррозии. Благодаря этому считается одним самых важных технических металлов. Алюминиевые сплавы получают литейным, деформируемым и другими способами.

Исторические факты

Впервые об этом металле упоминается во времена римского императора Тиберия. Неизвестно, миф это или правда, но правителю в дар принесли чашу из очень легкого металла, визуально похожего на серебро.

Испугавшись, что новый материал обесценит лежавшее в казне золото и серебро, он казнил изобретателя и уничтожил работы из алюминия. Заговорили вновь о легком серебристом металле спустя полторы тысячи лет.

Известный немецкий врач и испытатель Парацельс фон Гогенгейм открыл алюминий в процессе исследования квасцовой земли. В то время её называли глиноземом.

Нахождение в природе

Одним из самых распространенных среди металлов считается алюминий. Он занимает 8,8 % всей массы земной коры. Его соединения – боксит, алюмосиликаты, корунд. Большую часть земной коры составляют алюмосиликаты. Боксит относится к горным породам, из которого добывают алюминий.

Практически весь металл алюминий в природе находится лишь в соединения. В редких случаях находят чистый металлический алюминий в очень маленьких количествах. Среди основных соединений стоит отметить такие:

  • Бокситы;
  • Нефелины;
  • Алуниты;
  • Глиноземы;
  • Корунд;
  • Полевые шпаты;
  • Каолинит;
  • Берилл;
  • Хризоберилл.

Также его находят в природных водах в форме низкотоксичных соединений, таких как фторид. Чистый алюминий включает только устойчивый изотоп 27 AI.

Как получают алюминий?

Химический элемент алюминий достаточно сложно получить в чистом виде. Для получения алюминия потребуется провести множество этапов по отделению его от других элементов.

Как получают алюминий? Сам процесс состоит из нескольких этапов: измельчение бокситной руды и добыча глинозема, получение конечного элемента из него. Другими словами его называют кристаллической окисью алюминия, которую электролизуют в криолите. Температура плавления 960 — 970 °С.

Для этой процедуры требуется большое количество электроэнергии, поэтому производство вещества часто находится вблизи масштабных электростанций.

Новый волновой энергетический конвертер «Пингвин»: преобразование энергии волн в электроэнергию

Физические и химические свойства

Основные физические свойства алюминия заключаются в высокой теплопроводности, практически в два раза больше чем сталь. Кроме того он имеет плотность в три раза меньше, чем у железа и цинка. И ко всему этому стоит добавить высокую прочность  материала. Алюминий реагирует с такими веществами: медь, магний, кремний и другие.

Химические свойства алюминия:

  • Образование соединений ионного и ковалентного вида;
  • Высокая энергия ионизации;
  • Высокая плотность заряда наряду с катионами других подобных материалов;
  • Слабая подверженность коррозии;
  • Реакция с кислородом, галогенами, неметаллами, фтором, серой, азотом, углеродом, водой.

Где и как производят алюминий?

Добыча и производство алюминия в целом состоит из трех стадий. Первый и второй этапы – выработка бокситов и образование из них глинозема. На последнем из глинозема получают чистый материал в процессе электролиза. На 4-5 тонн алюминийсодержащей руды приходится 2 глинозема и 1 алюминий.

Добыча алюминия в мире может производиться из других алюминиевых руд, но самыми распространенными считаются бокситы. Основа их — оксид алюминия и других минералов. Качество определяется высоким содержанием металла. Общий мировой запас алюминиевых руд составляет более 18 миллиардов тонн. Учитывая теперешнюю добычу алюминия в мире по странам, его должно хватит более чем на один век.

Большая часть бокситов находится в странах с тропическим поясом. Только 73 % приходится на Индию, Гвинею и Австралию. Больше всего бокситов сосредоточено в Гвинее. Они имеют высокое качество и минимум минеральных примесей. По подсчетам 2014 года отмечают такие страны — лидеры по добыче алюминия: Китай, Австралия, Бразилия, Гвинея, Индия, Ямайка, Россия и Казахстан.

Свойства никеля. Способы получения, где добывают, динамика курса

Как правило, добыча алюминия осуществляется открытым методом. При помощи специального оборудования убирают слой земной коры, которая перевозится для следующего этапа переработки. Есть точки добычи руды с глубоким залеганием. Для получения ее приходится сооружать шахты. Самая глубокая шахта находится в России. Глубина ее составляет 1550 метров.

Россия по добыче алюминия находится на 7 месте мирового рейтинга. В этой стране существует более пятидесяти месторождений. Одним из самых старых считается Радынское, находящееся в Ленинградской области.

Среди всех мест добычи алюминия в России выделяют «Красную шапочку», Кальинское, Ново-Кальинское в Североуральске, Черемузовское в Свердловской области. Наша страна славится также большим разнообразием заводов-производителей металла.

Наиболее крупным в России и не только является «Русал», который производит более  3 миллионов тонн металла.

Этот металл имеет такие особенности:

  • Его соединения существуют не только на нашей планете, но и на Луне и Марсе;
  • В организме человека имеется более 100 мг данного вещества;
  • Суточная необходимость в нем составляет 2, 4 мг;
  • Больше всего химического элемента находится в яблоках;
  • Первый слиток чистого металла был произведен в 1932 году.

Сферы применения металла

Алюминий получил широкое применение в качестве конструкционного материала. Главные преимущества его – легкая масса, гибкость штамповки, устойчивость к коррозии, высокий уровень тепло или электропроводности, нетоксичность соединений. Именно эти достоинства привели к его широкому использованию в производстве посуды для кухни, упаковочной тары и фольги для пищевой отрасли.

Говоря о недостатках, следует в первую очередь отметить невысокую прочность. Поэтому в алюминий стали добавлять малую долю меди и магния. Также материал успешно применяется в производстве электротехники, поскольку его электропроводность на высоком уровне. Единственный минус – сложность пайки из-за прочной оксидной пленки.

Урановая руда: свойства, применение, добыча

Легкий металл используется в разных видах транспорта. В сфере авиации он является главным конструкционным материалом.  Применение алюминия коснулось и область судостроения. При помощи сплавов из него производят корпусы, палубы и оборудование для суден.

Применение в качестве восстановителя

Алюминий успешно применяется в качестве восстановителя. Алюминиевое восстановление металлов достаточно распространено. Выплавка алюминия позволяет восстанавливать редкие виды металлов. Также его применяют для пиротехники.

Виды сплавов

Для производства конструктивных материалов требуется большая прочность. Алюминий таковой не обладает, поэтому его соединяют с другими химическими элементами в меньшем количестве. Самые распространенные сплавы:

  1. Алюминиево-магниевые. Отличаются высокой прочностью, гибкостью, устойчивостью к коррозии, вибростойкостью и свариваемостью. Процент магний в сплавах составляет не более 6 %.
  2. Алюминиево-марганцевые. Обладают также высокой прочностью, пластичностью, неподверженностью коррозии и свариваемостью.
  3. Алюминиево-медные. Одни из самых высокотехнологичных. Улучшенный вариант низкоуглеродистых сталей. Существенный минус – подверженность коррозии.

Алюминий в ювелирных изделиях

Особенную ценность представлял металл во времена Наполеона III. В тот период из него изготавливали ювелирные изделия, пуговицы, посуду. Ее оценивали наряду с золотой и серебряной. Но спрос на драгоценности из алюминия быстро прошел, после того как возникли новые возможности его добычи.

Другие сферы применения

Скульптура из алюминия

Легкий металл используют в разных отраслях, в том числе военной промышленности. Это как правило касается оружейного производства. Также известно его применение в ракетной технике в качестве твердого топлива и горючих компонентов.

Токсичность металла

Хотя алюминий очень распространен в мире, живые существа не используют его из-за небольшой токсичности. Соединения его долгое время оказывают вредное действие на людей и животных. Наибольшее влияние оказывают ацетат и гидроксид алюминия. Они воздействуют негативным образом на нервную систему и выделительную функцию организма.

Палладий — надежная инвестиция в ваше будущее!

Алюминий в инвестициях

В настоящее время выгодно инвестировать деньги в алюминий. Динамика цен на алюминий в 2018 году колеблется до 2, 562 доллара за тонну. Такой рост обусловлен множеством санкций и последствиями их. Цены на металл на бирже в апреле-мае не достигали выше 2,280 долларов.

Источник: https://promdevelop.ru/alyuminij-svojstva-kak-dobyvayut-sfery-primeneniya-i-investitsionnaya-privlekatelnost-na-2018-god/

Производство алюминия от сырья до технологии

Алюминий является одним из самых распространенных химических элементов на Земле, используется в машиностроении, энергетике и строительстве. Ежегодно добыча и потребление этого металла увеличивается на 7%. Производство алюминия является сложным техническим процессом и требует большого количества энергетических, транспортных, трудовых и сырьевых ресурсов.

Производство алюминия в России и мире

Объем производства алюминия в 2019 году составляет 72 млн тонн. Международный алюминиевый рынок находится в дефиците, составляющем 277 тыс. тонн.Крупнейшими странами-изготовителями данного металла являются Китай, Россия, США, Австралия, Бразилия и Индия. Страны Северной и Южной Америки активно сокращают добычу бокситов.

Рост производства чистого алюминия обеспечивается государствами Ближнего Востока и Азии. В этих регионах содержится свыше 73% мировых запасов алюминиевых руд, залегающих на земной поверхности. В них отсутствует большое число металлических и газообразных веществ.

Крупнейшими производителями алюминия в мире являются следующие транснациональные компании:

  1. UCRUSAL: российский концерн, производящий 13% всех алюминиевых сплавов в мире. Объем производства компании составляет 3,75 млн тонн в год. РУСАЛ обладает собственной инженерно-технической базой и экспортирует свою продукцию в страны Европы, Северной Америки и Юго-Восточной Азии.
  2. Chalco: китайская государственная корпорация, являющаяся вторым крупнейшим производителем алюминиевых материалов в мире. Объем производства составляет 3,4 млн тонн в год.
  3. RioTinto: австралийско-британская горно-металлургическая компания, производящая глинозем. Объем производства концерна составляет 3,1 млн тонн в год. RioTinto образует с канадской организацией Alcan совместное предприятие по добыче бокситов.

На рынке стран-лидеров по производству чистого алюминия наблюдается переизбыток мощностей. Это обусловлено циклическим характером спроса и большим количеством конкурентоспособных предприятий. Для снижения переизбытка мощностей многие предприятия стали экспортировать алюминиевые полуфабрикаты. С 2015 г. продажи этой продукции ежегодно растут на 20%.

В Российской Федерации присутствует 17 заводов по изготовлению глинозема и алюминиевых листов. Большая часть предприятий располагается на Урале в и в Сибири. Высокая эффективность российских алюминиевых заводов обуславливается следующими факторами размещения производства:

  1. Сырьевой: предприятия расположены рядом с основными месторождениями алюминия. Это позволяет снизить затраты на транспортировку сырья и снизить стоимость готовой продукции
  2. Энергетический: чистый алюминий изготавливается посредством электролиза, поэтому заводы расположены рядом с крупными гидроэлектростанциями, вырабатывающими большое количество электрической энергии.
  3. Потребительский фактор: продукция российский компаний, производящих алюминий, покупается странами Южной и Северной Америки, Азии, Ближнего Востока, Европы и Африки.
  4. Транспортный: заводы располагаются рядом с крупными транспортными узлами, позволяющими эффективно перевозить сырье и готовую продукцию на большие расстояния. Для транспортировки металла чаще всего используются железнодорожные поезда.

В настоящее время производство алюминия в России снижается и составляет 7,3 млн тонн в год. Это связано с разрушением межотраслевых и хозяйственных связей со странами бывшего СССР.

Технология производства

Технология производства алюминия включает в себя 3 основных этапа:

  1. Добыча боксита.
  2. Переработка алюминийсодержащих руд в глинозем.
  3. Выделение чистого металла из глинозема посредством электролиза и его очистка от лишних примесей.

Производство данного химического элемента осуществляется в электролизном цехе. Он состоит из нескольких корпусов протяженностью 1000 м. В нем располагаются электролизные ванны с большими проводами, подключенными к источнику питания. Ванны оборудованы электродами, находящимися под напряжением 6 В.

Большая часть процессов в электролизном цехе автоматизированы. Перед началом электролиза емкость ванн наполняется расплавленным криолитом. Это вещество предназначено для создания токопроводящей среды при высоких температурах. Дно ванны выступает в качестве катода. Анодом являются угольные блоки, погруженные в криолит.

В промышленности алюминий получают методом пирометаллургии, разработанного немецким химиком Карлом Иосифом Байером. Этот способ представляется собой восстановление металла с помощью углекислого газа или оксида углерода.

Все работы на предприятии выполняются в соответствии со схемами производства алюминия, где подробно расписан процесс электролиза глинозема. Изначально в ванну загружается порция глинозема. Под воздействием электричества вещество разлагается.

В результате связь между частицами алюминия и кислорода разрывается.

После электролиза на дне электролитических ванне остается чистый алюминий, находящийся в расплавленном состоянии. Кислород, вступая в реакцию углеродом, образуется углекислый газ. Полученный материал разливают по вакуумным ковшам и доставляют в литейный цех. Здесь металл подвергается термической обработке. С помощью переплавки из сплава удаляются лишние примеси. В результате вещество приобретает твердую форму и сортируется по блокам весом до 22 кг.

Алюминий сохраняет свои свойства при длительной эксплуатации. Поэтому часть алюминиевой продукции перерабатывается и повторно используется для создания чистых металлов, что оказывает положительное влияние на экологию.

Объем затрат на охрану окружающей среды в этой сфере промышленности составляет 4%.

Власти используют множество экономических мер в области ООС, предоставляя льготы предпринимателям, соблюдающим экологические нормы и государственные стандарты в процессе хозяйственной деятельности.

Производство глинозема

Глинозем представляет собой порошок белого цвета, образованный в результате взаимодействия алюминия с кислородом. Технологический процесс производства этого вещества был разработан Байером в конце XIXстолетия. С помощью этой технологии изготавливается 90% глинозема в мире.

При получении порошкообразного оксида алюминия методом Байера можно использовать высококачественные бокситы с низким содержанием примесей. В процессе изготовления глинозема кристаллическая гидроокись алюминия растворяется в каустической щелочи высокой концентрации.

Химическая реакция осуществляется при высоких температурах. Посторонние вещества, входящие в состав боксита, при взаимодействии с раствором едкого натра выпадают в осадок. Примеси, отделенные от гидроокиси алюминия, называются красным шламом.

В процессе переработки из них можно извлечь соединения кремния, железа, титана и иных химических элементов.

Крупные алюминиевые частицы с помощью фильтрации отделяются от гидроокиси алюминия. Полученное вещество промывают, высушивают и нагревают до температуры кипения воды. В результате образуется глинозем. У него отсутствует срок годности. Хранить глинозем необходимо в сухих местах. Транспортировка вещества осуществляется в железнодорожных вагонах.

ЭТО ИНТЕРЕСНО:  Как правильно ухаживать за серебром

Получение алюминия из глинозема

Производители активно совершенствуют технологию производства алюминия из глинозема, стараясь изготавливать металл с минимальными затратами электроэнергии и наименьшим воздействием на окружающую среду. В современных электролитических цехах используются инертные аноды, что позволяет отказаться от использования угля. Их можно использовать в течение нескольких десятилетий.

В результате использования инновационных технологий при электролизе глинозема в атмосферу не выделяется углекислый газ. В электролизных ваннах вырабатывается чистый кислород. Это позволяет снизить траты на вентиляционные механизмы, предназначенные для своевременного удаления углекислого газа из помещения. При электролизе используется не менее 2 Т глинозема, 0,1 Т криолита и небольшое количество фторидов.

Рафинирование алюминия

Образованный в результате электролиза металл содержит небольшое количество металлических и газообразных веществ:

  • кремний;
  • железо;
  • цинк;
  • углерод;
  • водород;
  • азот;
  • озон;
  • углекислый газ.

Примеси ухудшают свойства металла. Поэтому во время производства их удаляют при помощи рафинирования. Эта процедура осуществляется 2 методами:

  1. Хлорирование: осуществляется при температуре 750°С. Алюминий подвергается продувке хлористым раствором. Хлорирование производится в специальных ковшах в течение 12 мин.
  2. Электролитический способ: осуществляется с применением фтористых и хлористых солей. Металл подвергается термической обработке и анодному растворению. В результате из расплавленного вещества удаляются лишние примеси.

После процедуры рафинирования чистота металла составляет 99,5 – 99,9%. При этой процедуры также из рафинируемого вещества также удаляется 1% алюминия.

Сырье

В естественной среде алюминий встречается только в виде руд – бокситов. Эти вещества представлены виде гидроксидов, корунда и каолинита. В них содержится свыше 40 химических элементов. глинозема в бокситах составляет 45%.

Одним из важнейших параметров алюминиевых руд является кремниевый модуль, характеризующий отношение содержаний оксидов алюминия и кремния. Он должен составляет не менее 2,6. В недрах Земли находится свыше 18 млрд тонн бокситов.

При нынешних темпах производства из этого сырья можно производить алюминий до 2122 г.

Необходимое оборудование

Для добычи бокситов, преобразования руд в глинозем и извлечения чистого металла требуется следующее оборудование:

  1. Механизмы раздачи глинозема: предназначены для транспортировки порошкообразного оксида алюминия внутри цеха и дозированной подачи глинозема к электролизным машинам.
  2. Катодная ошиновка: представляет собой гибкие ленты катодных спусков, прикрепленных к стержням катодных шин, выполненных из стальных материалов.
  3. Газоочистительные установки: используются для очистки помещения от газов, образующихся во время производства фторида алюминия сухим способом.
  4. Монтажное оборудование: краны линейного и технического предназначения.
  5. Электролизер: прибор для разделения основных компонентов глинозема при помощи электрического тока во время электролиза.

В зависимости от технологических особенностей производства требуется большое количество барабанных вращающихся печей. Они используются при сухих методах производства. При организации предприятия важно обеспечить оборудование для электролиза глинозема электроэнергией.

Источник: https://stankiexpert.ru/tehnologii/proizvodstvo-alyuminiya.html

Первичный алюминий

Практически весь современный алюминий получается при помощи процесса Холла-Эру, независимо друг от друга разработанным двумя разными людьми — Чарльзом Холлом и Полем Эру в 1886 году. Оксид алюминия растворяется в предварительно расплавленном гексафтороалюминате натрия и, с помощью электролиза, чистый алюминий накапливается на анодной массе, изготовленной из графита, или расходуемых коксовых электродов.

Для электролиза первичного алюминия требуется огромное количество электроэнергии, поэтому все производства алюминия сосредотачиваются рядом с источниками недорогой энергии — гидроэлектростанциями ГЭС. Например в России Иркутский Алюминиевый завод (ИркАЗ) находится в непосредственной близости от Иркутской ГЭС. Красноярский Алюминиевый завод потребляет энергию Красноярской ГЭС, самая крупнейшая Братская ГЭС работает на БрАЗ.

Посмотреть полный список алюминиевых заводов России Вы можете по ссылке.

Чтобы произвести одну тонну алюминия технической чистоты требуется две тонны глинозема (алюминиевой руды), порядка 70 кг криолита (гексафтороалюмината натрия), 39 кг фторида алюминия и 580 кг электродов (анодов). Затраты электроэнергии для производства 1000 кг первичного алюминия составляют примерно 16000 кВт/ч.

 

В природе алюминий находится в следующих геологических формах:

  • Александрит
  • Изумруд
  • Аквамарин
  • Полевой шпат
  • Рубин (сапфир, корунд)
  • Алуниты
  • Нефелины
  • Бокситы
  • Глиноземы (смесь магнезита, известняка, каолина с кремниевый песком)
  • Самородный алюминий находят в крайне редких аномальных зонах на Земле, в жерлах вулканов.

Так же незначительное количество алюминия в виде растворенных соединений содержится в пресной (от 0,001 до 12 мг/л) и в морской воде (~0,01 мг/л).

История производства алюминия

Первая официально подтвержденная информация о получении чистого алюминия датируется 1825 годом, когда датский алхимик Ганс Эрстед смог выделить несколько миллиграммов чистого алюминия. Два года спустя, в 1827 году получил несколько маленьких крупинок первичного алюминия, нагреванием хлористого алюминия с калием. Это были незначительные объемы металла и себестоимость превышала стоимость золота на тот момент.

Первый промышленный способ алюминия технической чистоты был разработан французом Сент-Клер Девилем, финансированием которого занимался сам Наполеон. Промышленное получение алюминия сводилось на замещении алюминия натрием из хлорида натрия и алюминия. За полвека использования этого метода было получено порядка 200 тонн чистого металла. И он же получил первый алюминий методом медленного электролиза расплава хлорида натрия алюминия.

Первый завод по производству чистого алюминия был построен в 1885 году в Германии. Завод работал по упрощенной технологии Девиля алюминий выделялся путем взаимодействия магния и криолита. За пять лет работы алюминиевый завод произвел 60 тонн первичного алюминия.

В 1886 году одновременно в двух разных концах света — во Франции и США был разработан способ получения первичного алюминия методом электролиза. В то время многое уперлось в дефицит электроэнергии и недостаточно развитые технологии в области электротехники. С появлением этого способа рыночные цены на алюминий упали в десятки раз, что позволило применять алюминий гораздо шире.

Первым В России был построен Волховский Алюминиевый завод. Сейчас это предприятие производящее алюминий особой чистоты 99,999. Пуск производства состоялся в 1932 году. А уже к 1939 году Алюминиевая промышленность СССР произвела 50 тысяч тонн алюминия, перейдя на полное обеспечения внутренних потребностей промышленности на тот момент.

Активно стимулировала рост Алюминиевой промышленности Вторая мировая война. В довоенное время во всем мире производилось 620 тонн в год, а уже во время войны, в 1943 году достигало 2 млн. тонн. Это было обусловлено большим потреблением металла в авиации и другой военной технике. Так же во время второй мировой войны активно использовался алюминиевый порох.

Вы можете прочитать более подробно про историю промышленного производства на сайте.

Алюминиевая промышленность

Алюминиевая промышленность состоит из различных этапов и направлений:

1. Поиск, разработка и добыча алюминиевой руды, как правило бокситов;

2. Обогащение окиси алюминия. Производство глинозема;

3. Производство анодной массы;

4. Производство необходимых химических компонентов для электролиза;

5. Непосредственно процесс электролиза алюминия;

6. Выплавка металлического алюминия в слитки, повторный электролиз для получения алюминия высокой и особой чистоты;

7. Производство алюминиевых полуфабрикатов.

Алюминий — это легкий металл серебристо-белого цвета, самый распространенный по содержанию в земной коре и третий элемент периодической системы Менделеева по распространенности после кислорода и кремния. В природе этот металл почти всегда встречается в виде прочного соединения с кислородом: оксида алюминия.

Производство первичного алюминия

Получение первичного алюминия (чистого металла) является более трудоемким и сложным, нежели с другими металлами, так как его руды обладают очень высокой температурой плавления (нифелины, корунд, бокситы и другие).

Замещение в соединении с углеродом так же не применяется, так как коэффициент восстановления алюминия выше, нежели чем у углерода.

Сейчас активно разрабатывается способ промежуточного замещения с разложением при температуре 2000 градусов, но это пока что будущая технология, не применяемая в реальном производстве первичного алюминия.

Источник: http://a1um.ru/aluminium-pervichnuy.html

Что производят из алюминия

Алюминий — химический элемент третьей группы периодической систе-

мы элементов Д. И. Менделеева. Его порядковый номер 13, атомная масса

26,98. Устойчивых изотопов алюминии не имеет.

Химические свойства

Взаимодействие с неметаллами

С кислородом взаимодействует только в мелкораздробленном состоянии при высокой температуре:

реакция сопровождается большим выделением тепла.

Выше 200°С реагирует с серой с образованием сульфида алюминия:

При 500°С – с фосфором, образуя фосфид алюминия:

При 800°С реагирует с азотом, а при 2000°С – с углеродом, образуя нитрид и карбид:

С хлором и бромом взаимодействует при обычных условиях, а с йодом при нагревании, в присутствии воды в качестве катализатора:

С водородом непосредственно не взаимодействует.

С металлами образует сплавы, которые содержат интерметаллические соединения – алюминиды, например, CuAl2, CrAl7, FeAl3 и др.

Взаимодействие с водой

Очищенный от оксидной пленки алюминий энергично взаимодействует с водой:

в результате реакции образуется малорастворимый гидроксид алюминия и выделяется водород.

Взаимодействие с кислотами

Легко взаимодействует с разбавленными кислотами, образуя соли:

8Al + 30HNO3 = 8Al(NO3)3 + 3N2O + 15H2O (в качестве продукта восстановления азотной кислоты также может быть азот и нитрат аммония).

С концентрированной азотной и серной кислотами при комнатной температуре не взаимодействует, при нагревании реагирует с образованием соли и продукта восстановления кислоты:

Взаимодействие со щелочами

Алюминий – амфотерный металл, он легко реагирует со щелочами:

в растворе с образованием тетрагидроксодиакваалюмината натрия:

при сплавлении с образованием алюминатов:

Восстановление металлов из оксидов и солей

Алюминий – активный металл, способен вытеснять металлы из их оксидов. Это свойство алюминия нашло практическое применение в металлургии:

Области применения

Алюминий обладает целым рядом свойств, которые выгодно отличают его от других металлов. Это − небольшая плотность алюминия, хорошая пластичность и достаточная механическая прочность, высокие тепло- и электропроводность.

Алюминий нетоксичен, немагнитен и коррозионностоек к ряду химических веществ.

Благодаря всем этим свойствам, а также относительно невысокой стоимости по сравнению с другими цветными металлами он нашел исключительно широкое применение в самых различных отраслях современной техники.

Значительная часть алюминия используется в виде сплавов с кремнием медью, магнием, цинком, марганцем и другими металлами. Промышленные алюминиевые сплавы обычно содержат не менее двух−трех легирующих элементов, которые вводятся в алюминий главным образом для повышения механической прочности.

Наиболее ценные свойства всех алюминиевых сплавов − малая плотность

(2,65÷2,8), высокая удельная прочность (отношение временного сопротивления к плотности) и удовлетворительная стойкость против атмосферной коррозии.

Алюминиевые сплавы подразделяют на деформируемые и литейные. Деформируемые сплавы подвергают горячей и холодной обработке давлением, поэтому они должны обладать высокой пластичностью. Из деформируемых сплавов широкое применение нашли дуралюмины − сплавы алюминия с медью, магнием и марганцем. Имея небольшую плотность, дуралюмины по механическим свойствам близки к мягким сортам стали. Из деформируемых

алюминиевых сплавов, а также из чистого алюминия в результате обработки давлением (прокатка, штамповка) получают листы, полосы, фольгу, проволоку, стержни различного профиля, трубы. Расход алюминия на изготовление этих полуфабрикатов составляет около 70 % его мирового производства.

Остальной алюминий применяется для изготовления литейных сплавов, порошков, раскислителей, а также для других целей.

Из литейных сплавов получают фасонные отливки различной конфигурации. Широко известны литейные сплавы на основе алюминия − силумины, в которых основной легирующей добавкой служит кремний (до 13%).

В настоящее время алюминий и его сплавы используют практически во всех областях современной техники. Важнейшие потребители алюминия и его сплавов — авиационная и автомобильная отрасли промышленности, железнодорожный и водный транспорт, машиностроение, электротехническая промышленность и приборостроение, промышленное и гражданское строительство, химическая промышленность, производство предметов народного потребления.

Использование алюминия и его сплавов во всех видах транспорта и в первую очередь − воздушного позволило решить задачу уменьшения собственной (“мертвой”) массы транспортных средств и резко увеличить эффективность их

применения. Из алюминия и его сплавов изготавливают авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач, насосы и другие детали.

Алюминием и его сплавами отделывают железнодорожные вагоны, изготавливают корпуса и дымовые трубы судов, спасательные лодки, радарные мачты, трапы.

Широко применяют алюминий и его сплавы в электротехнической промышленности для изготовления кабелей, шинопроводов, конденсаторов, выпрямителей переменного тока. В приборостроении алюминий и его сплавы используют в производстве кино- и фотоаппаратуры, радиотелефонной аппаратуры, различных контрольно-измерительных приборов.

Благодаря высокой коррозионной стойкости и нетоксичности алюминий широко применяют при изготовлении аппаратуры для производства и хранения крепкой азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов. Алюминиевая фольга, будучи прочнее и дешевле оловянной, полностью вытеснила ее как упаковочный материал для пищевых продуктов.

Все более широко используется алюминий при изготовлении тары для консервирования и хранения продуктов сельского хозяйства, для строительства зернохранилищ и других быстровозводимых сооружений.

Являясь одним из важнейших стратегических металлов, алюминий, как и его сплавы, широко используется в строительстве самолетов, танков, артиллерийских установок, ракет, зажигательных веществ, а также для других целей в военной технике.

Источник: https://MyTooling.ru/instrumenty/chto-proizvodjat-iz-aljuminija

Как добывается и производится алюминий в промышленных условиях

К числу наиболее распространенных металлов земной коры относится алюминий.  Этот металл является наиболее легким, а также обладает хорошей теплопроводностью. Хорошо поддается механической обработке литью, хорошо гнется, вторичный по переработке. Его главные физические свойства:

  • Имеет серебристый цвет (с оттенком белого);
  • Легкий;
  • Плотность составляет около 2713 кг на один квадратный метр;
  • Температура кипения от 2518.9 градусов Цельсия;
  • Высокая пластичность до 50%.
ЭТО ИНТЕРЕСНО:  Что такое медицинское золото

Получение алюминия

Залежи глиноземного состава присутствуют практически во всех странах мира. Начальным этапом добычи является Бокситовая руда. Это название получено в честь местности Baux, находящейся на юге Франции. Пятерку лидеров по продаже, а также добычи бокситовой породы заняли следующие страны мира:

  • Россия до 4.5 млн. тонн за год;
  • КНР до 13,50 млн. тонн в год;
  • США до 2,5 млн. тонн за год;
  • Канада до 3,5 млн. тонн в год;
  • Австралия до 2,0 млн. тонн за год.

Помимо этого, сюда вошли:

  • Исландия до 0,50 млн. тонн за год;
  • Таджикистан до 0,43 млн. тонн за год;
  • ОАЭ до 0,90 млн. тонн за год;
  • Германия до 0,56 млн. тонн за год;
  • Бразилия до 1,70 млн. тонн за год;
  • Индия до 1,30 млн. тонн за год.

Металлическая руда разделяется по качеству, а содержание посторонних примесей влияет на критерии востребованности рынка продаж:

  • Повышенное количество серы усложняет процесс переработки вещества в чистый сплав;
  • Большое содержание кремниевого модуля повышает качество продукции;
  • Наличие карбонатов в руде усложняет процесс переработки породы;
  • Наименьшее содержание железа облегчает добычу металла из-под земли.

Сырье для производства

В производство алюминия включены следующие категории химических элементов:

Нефелины. Состоят из нефелиновых сиенитов уртитов. Основные компоненты последних: апатит и нефелин. Составные части обрабатывают и получают апатитовый нефелиновый концентрат.

Алунит. Это основной сульфат алюминия и натрия. Представляет собой комплексное сырье, состоящий из серного ангидрида и щелочи.

Криолит. Соединение создают искусственно. Плавиковый шпат разводят с серной кислотой в специальных самоперемешивающихся печах. Образующуюся летучую кремнефтористую кислоту фильтруют с помощью водных башен, установленных над ваннами. После промышленный раствор очищают содой.

https://www.youtube.com/watch?v=VVAAIF-hbLo

Следующая стадия направлена на получения криолита. Плавиковую кислоту разбавляют гидроксидом алюминия и содой, погружают в большие котлы, где происходит выплавка металлической руды. Криолит оседает, далее его фильтруют, просушивают при температуре 150 градусов Цельсия.

Бокситовый сплав состоит из оксидов железа, кремния и гидроксидов алюминия. Данное сырье используют в качестве флюса плавильной металлургии.

Добываемая земля выглядит как глина. Имеет однородную структуру. Часто попадается гороховидный полосчатый рисунок. Тропический климат способствует образованию качественного состава руды. Под высокими температурами минералы земной коры разлагаются, образуя конечный продукт Боксит. Далее полученный состав очищают от примесей газов.

Алюминиевый сплав имеет прочную связь с кислородом, поэтому процесс добычи его из почвы более затруднителен, по сравнению с другими металлами. Чтобы получить нужное соединение, глинозем перерабатывают поэтапно:

  1. Добывают залежи металлической руды;
  2. Из залежей получают глинозем или оксид алюминия;
  3. Далее химический элемент расщепляют в расплавленном электролите.

Последний пункт процесса переработки получил название Холла-Эру в 1886 году. Главными разработчиками современного метода плавления стали Чарльз Холл и Пол Эру.

Для производства одной тонны серебристого состава требуется 2000 кг. глинозема, 40 кг. фторида, 70 кг. криолита и около 600 кг. графитовых электродов.

Технологии производства алюминия

Металл получают путем извлечения глинозема из бокситовых руд. Его производят тремя методами:

  • Кислотным растворением алюминия;
  • Щелочным растворением алюминия;
  • Электролитическим методом.

Часто применяемые методы получения металла — это щелочное растворение алюминиевой руды и электролитическое получение алюминия. Щелочь быстро растворяет химический раствор алюминия. Смесь разбавляют гидроксиподом алюминия. Изготовление происходит поэтапно:

  • Глиноземный состав измельчают с добавлением щелочи или извести до однородной консистенции;
  • Дробленую пульпу закладывают в автоклав при температуре +240 градусов Цельсия и выщелачивают при больших температурах;
  • В растворе алюминат натрия и силиката натрия образуется нерасщепляемый элемент натриевый алюмосиликат. Отходы раствора фильтруют путем добавления разбавленной смеси щелочи при температуре +140 градусов Цельсия;
  • Металлический раствор перекачивают в декомпозеры (ванны с размешивающим приспособлением) с добавлением гидроокиси. Там извлекается гидроокись алюминия при пониженной температуре (+80 градусов Цельсия);
  • Получившуюся смесь отправляют на кальцинацию. Температура печи достигает +1300 градусов Цельсия, при вращении печи консистенция полностью испаряет влагу.

Процесс электролиза

Электролитическое восстановление происходит путем размещения металлической породы глинозема в электролиз каждые пол часа. Там при температуре около 1000 градусов Цельсия обжигается сырье. Промышленные масштабы позволяют использовать ванны с обожжёнными анодами для металлической руды:

  • Сырье погружают в сосуд, где происходит реакция алюмелевой руды;
  • Из окиси алюминия образуется хлорид алюминия;
  • Соединение хлора фильтруется;
  • Металл оседает на катоде.

Ванны без применения жидкого криолита экономят до 35% энергии, а также позволяют уменьшить расходы на дорогостоящий электрохимический криолит.

Рафинация металла

В ванну для рафинирования погружают алюминиевою породу после чего она делится на три составные части:

  • Расплавленный глинозем (нижний слой);
  • Электролит, состоящий из смеси хлорида бария, фторидов или натрия;
  • Металлическая пленка (верхний слой).

Состав анода таков: никель, марганец, свинец или олово. Допускается незначительное присутствие магния, который отсеивается хлором флюсом. В конечном результате получается 99,9% алюминий.

Металлический элемент применяют для создания транспортных средств, возведения зданий или сооружений, а также конструирования электронных приборов или электрической проводки. Металл обладает сохранением своих первоначальных качеств, что позволяет использовать состав в производстве повторно.

Разрабатываются новые технологии выплавки металлических сплавов, позволяющие экономично расходовать электроэнергию, а также мировые запасы руды.

Источник: https://oxmetall.ru/metalli/alyuminij/kak-proizvoditsya-alyuminij

Что было первым изделием сделанным из алюминия

25 апреля 2017 г. в 16:01

О том, где еще может использоваться алюминий, рассказывает Life.ru.

В небе и в космосе

Впервые алюминий «полетел» в 1900 году — в виде каркаса и винтов огромного дирижабля LZ-1 Фердинанда Цеппелина. Но мягкий чистый металл годился только для медлительных летательных аппаратов легче воздуха.

По-настоящему «крылатый» алюминий  был уже прочнее в пять раз, поскольку содержал в своём составе марганец, медь, магний, цинк в разных процентных соотношениях — небо и космос покоряли разновидности дюралюминия, сплава, изобретённого ещё в начале ХХ века немецким инженером Альфредом Вильмом.

Материал был перспективным, но имел и немало ограничений — требовал так называемого старения, то есть набирал заложенную в него прочность не сразу, а лишь со временем. Да и сварке не поддавался И тем не менее покорение космоса началось именно с дюраля, из которого в том числе выполнен и шар знаменитого первого искусственного спутника Земли.

Гораздо позже, в разгар космической эпохи, начали появляться сплавы и материалы на основе алюминия с куда более замечательными свойствами.

К примеру, дружба алюминия с литием позволила сделать детали самолётов и ракет значительно легче, не снижая прочности, а сплавы с титаном и никелем обладают свойством «криогенного упрочнения»: в космическом холоде пластичность и прочность их только возрастают.

Из тандема алюминия и скандия была выполнена обшивка космического челнока «Буран»: алюминиево-магниевые пластины стали гораздо прочнее на разрыв, сохранив при этом гибкость и вдвое повысив температуру плавления.

Более современные материалы — не сплавы, а композиты. Но и в них основой чаще всего является алюминий.

Один из современных и перспективных авиакосмических материалов называется «бороалюминиевый композит», где волокна бора прокатываются сэндвичем со слоями алюминиевой фольги, образуя под высокими давлениями и температурами крайне прочный и лёгкий материал. К примеру, лопатки турбин продвинутых авиационных двигателей представляют собой бороалюминиевые несущие стержни, одетые в титановую «рубашку».

В автопроме и на транспорте

Сегодня у новых моделей Range Rover и Jaguar доля алюминия в конструкции кузова составляет 81%. Первые же эксперименты с алюминиевыми кузовами принято приписывать компании Audi, презентовавшей A8 из лёгких сплавов в 1994 году.

Однако ещё в начале ХХ века этот лёгкий металл на деревянном каркасе был фирменным стилем кузовов знаменитых британских спорткаров Morgan.

Настоящее «алюминиевое вторжение» в автопром началось в 1970-е, когда заводы массово принялись использовать этот металл для блоков цилиндров двигателей и картеров коробок передач вместо привычного чугуна; чуть позже распространение получили легкосплавные колёса вместо штампованных стальных.

В наши дни ключевой тренд автопрома — электричество. И лёгкие сплавы на основе алюминия приобретают особую актуальность в кузовостроении: «энергосберегающий» металл делает электромобиль легче, а значит, увеличивает пробег на одном заряде батарей. Алюминиевые кузова использует марка Tesla — законодатель мод на рынке автомобилей будущего, и этим, собственно, всё сказано!

Отечественных автомобилей с алюминиевыми кузовами пока нет. Но нержавеющий и лёгкий материал уже начинает проникать в российскую транспортную сферу. Характерный пример — ультрасовременные скоростные трамваи «Витязь-М», чьи салоны полностью выполнены из алюминиевых сплавов, практически вечных и не нуждающихся в постоянной подкраске. Стоит отметить, что на создание одного трамвайного интерьера требуется до 1,7 тонны алюминия, который поставляет Красноярский алюминиевый завод «Русала».

«Потолок, стены, стойки — всё алюминиевое.

И это не просто обшивка листами, детали сложные, совмещающие в себе и отделочные, и несущие элементы, и туннели для вентиляции и проводки, — рассказывает Виталий Деньгаев, гендиректор компании «Красноярские машиностроительные компоненты», где были созданы алюминиевые салоны «Витязя». — Плюс помимо эстетики мы получаем ещё и высочайшую безопасность: в отличие от пластиков и синтетики алюминиевый салон не выделяет вредных веществ, если возникло возгорание!»

С 17 марта этого года 13 трамваев «Витязь-М» начали ходить по Москве и к 5 апреля уже перевезли первую сотню тысяч пассажиров! Этот быстрый и бесшумный городской транспорт с салонами на 260 человек, с Wi-Fi, климат-контролем, местами для инвалидов и детских колясок и прочими элементами комфорта, рассчитан на срок службы в 30 лет, что вдвое больше, чем у составов прошлых моделей. В ближайшие три года столица получит 300 «Витязей», 100 из которых встанут на рельсы уже в этом сезоне.

В принтерах будущего

Элементарными любительскими 3D-принтерами, печатающими из пластиковой нити, уже никого не удивишь. Сегодня начинается эра полноценной серийной 3D-печати деталей из металла.

Алюминиевый порошок — едва ли не самый распространённый материал для технологии, называемой AF (от Additive Fabrication, «аддитивное производство»).

Additive по-английски — «добавка», и в этом глубокий смысл названия технологии: деталь производится не из болванки, от которой в процессе обработки отрезается лишний материал, а наоборот — добавлением материала в рабочую зону инструмента.

Металлический порошок выходит из дозатора AF-машины и послойно спекается лазером в единую прочную массу монолитного алюминия.

Детали, которые делаются цельными по методу AF, поражают воображение своей пространственной сложностью; выполнить их классическими методами даже на самых современных металлообрабатывающих станках — невозможно! За счёт ажурной конструкции детали, созданные на машинах аддитивной печати из порошков алюминиевых сплавов, имеют прочность, как у монолита, будучи при этом в несколько раз легче. Производятся они безотходно и быстро — такие металлические «кружева» незаменимы в биомедицине, авиации и космонавтике, в точной механике, при изготовлении пресс-форм и так далее.

Ещё недавно все технологии, связанные с Additive Fabrication, были иностранными. Но сейчас активно развиваются отечественные аналоги. Например, в Уральском федеральном университете (УрФУ) готовится к запуску экспериментальная установка по производству металлических порошков для AF-3D-печати. Установка работает на принципе распыления расплавленного алюминия струёй инертного газа, такой метод позволит получать металлические порошки с любыми заданными параметрами размерности зерна.

В строительстве и освещении

Алюминий может быть также фасадным и кровельным материалом, срок службы которого не ограничивается парой лет и который крайне удобен для дизайнеров и монтажников! Для строительства разработаны особые патентованные сплавы и композиты с самыми разными свойствами — Alclad, Kal-Alloy, Kalzip, Dwall Iridium. Из алюминия можно штамповать детали, в которых кровельная плоскость составляет единое целое с несущими элементами. Это необходимо, к примеру, для создания раздвижных крыш стадионов.

  Какие проставки лучше полиуретан или алюминий

Покрытые специальной разновидностью фторполимера, родственной тефлону, алюминиевые детали крыш выдерживают огромные нагрузки от ветра и осадков. А при сооружении кровель огромных размеров, где общая длина листа от края до края может достигать нескольких десятков метров, используют особую технологию, разработать которую также позволила пластичность алюминия.

Чтобы избежать ненадёжного соединения множества небольших листов, на стройплощадку подвозят алюминиевую ленту шириной в несколько метров, свёрнутую в огромный рулон, и прямо на стройплощадке пропускают через специальную машину, делающую ровную ленту профилированной, а значит жёсткой. По специальным направляющим с роликами алюминиевый профиль подают на крышу здания.

Эту технологию разработала британская Corus Group, один из мировых лидеров в области производства кровельных алюминиевых листов (ныне в составе Tata Steel).

В нашей же стране алюминиевая архитектура по-настоящему разворачивается только сейчас, с отставанием от мировых темпов, но бодро их нагоняя, — из последних примеров внедрения можно назвать крышу стадиона «Зенит-Арена» в Санкт-Петербурге, объекты казанской Универсиады, сочинский аэропорт, строящийся сейчас в Нижнем Новгороде уникальный легкосплавный мост и другие объекты.

Здание построено, кровля возведена, теперь нужен свет! И тут алюминий снова в тренде. Это не только «крылатый» металл, но ещё и «металл света». Сейчас в мире горят миллиарды LED-ламп и число их ежесекундно растёт. В каждой лампе установлен алюминиевый радиатор, отводящий лишнее тепло от кристаллов светодиодов, не дающий им перегреться. Но куда более важную роль алюминий играет при изготовлении основы самих светодиодов — лейкосапфира.

В Алюминиевой ассоциации убеждены, что в течение 2–3 лет наши предприятия смогут полностью заместить импорт в Россию особо чистого оксида алюминия, что резко стимулирует отечественное светодиодное производство.

ЭТО ИНТЕРЕСНО:  Что за золото 325 пробы

В нашей жизни — повсюду

Просто мы не всегда об этом знаем! Практически все качественные гаджеты сделаны на основе алюминиевых сплавов: рамки и крышки смартфонов, планшетов, ноутбуков, корпуса «пауэрбанков» и многое другое. Спортивный инвентарь, детские коляски, кулинарная посуда, батареи отопления, мебельная фурнитура — список сфер, где задействован лёгкий металл, безграничен.

Но почему мы не всегда об этом знаем? Дело в том, что алюминий и его сплавы в «голом виде», как та, всем известная, но безнадёжно устаревшая алюминиевая ложка, в наши дни почти не встречается. Сегодня бал правит технология анодирования, которая позволяет покрывать детали из алюминия и его сплавов прочной износостойкой плёнкой оксида.

Анодирование не пачкает рук и может получить практически любой цвет и текстуру.

Одно из перспективнейших бытовых алюминиевых направлений — велосипедные рамы. Алюминиевая рама очень лёгкая, поэтому и поднимать велосипед, и ездить на нём очень удобно. Рама не ржавеет при повреждениях краски, легирующие добавки делают металл очень прочным, а технологии под названиями «баттинг» и «гидроформинг» позволяют производить трубы с переменной толщиной и с любыми изгибами, облегчая и усиливая раму именно там, где это нужно.

Миллионы велосипедов — огромный рынок! Однако пока рамы всех продаваемых и собираемых в нашей стране двухколёсников — импортные «Впрочем, в этой сфере наметилась небольшая революция: инженеры «Русала» разработали особый новый сплав, идеально подходящий для велорам, и ведут работу по развитию производства рам в нашей стране, — рассказывает заместитель редактора журнала «Металлоснабжение и сбыт» Леонид Хазанов. — Проект поддерживают «Русал», как единственный российский производитель алюминия, расположенный в Набережных Челнах завод алюминиевых профилей «Татпроф», готовый делать трубы для рам, и отечественная компания — сборщик велосипедов «Веломоторс». Если задуманные масштабы производства будут реализованы, наши рамы должны стать дешевле китайских и при этом куда выше по качеству».

Россия — мировой алюминиевый лидер, входящий в первую тройку производителей этого металла. СССР начал строить алюминиевые заводы в начале тридцатых годов ХХ века, к середине десятилетия полностью избавившись от импорта. Однако по-настоящему в «алюминиевую эру» мы вступаем, как ни странно, только сейчас.

Основной владелец «Русала» Олег Дерипаска неоднократно заявлял, что уровень потребления алюминия в России гораздо ниже общемирового и сегодня наконец настало время сломить этот тренд и приложить максимум усилий и средств для создания перерабатывающих мощностей на территории страны и вытеснить импортную продукцию, к качеству которой зачастую возникает масса вопросов.

Долгие годы инженеры-проектировщики избегали использования алюминия, поскольку в устаревших нормативных документах алюминиевые сплавы и композиты просто не фигурировали — сегодня же нормативы, ГОСТы и СНИПы пересматриваются и обновляются в духе времени. И практически все сферы промышленности ждут открытия для себя новых областей использования этого металла.

Источник: http://ooo-asteko.ru/chto-bylo-pervym-izdeliem-sdelannym-iz-alyuminiya/

Что было первым изделием сделанным из алюминия — Справочник металлиста

25 апреля 2017 г. в 16:01

О том, где еще может использоваться алюминий, рассказывает Life.ru.

Литой алюминий что это такое?

Наша статья поможет Вам в выборе сковороды, а также раскроет некоторые тонкости и секреты их производства.

Самое главное с чего нужно начать, это понять на какой плите Вы будите использовать сковороду, особенно это важно, если у вас индукционная плита или вы планируете ее купить в ближайшее время, далеко не все сковороды подходят для таких плит, поэтому обращайте внимание на значки использования по типам плит.

Также нужно быть внимательным обладателям керамических плит. С остальными плитами все гораздо проще – обычно для них подходят все сковороды, но на всякий случай будет не лишним проверить по значкам или описанию на сковороде.

По типам материалов, из которых изготовлены сковороды, они делятся на чугунные, из нержавеющей стали и алюминиевые

Чугунные сковороды как вы знаете, обладают волшебным ореолом любви наших бабушек. Давайте разберемся подробнее. Чугун имеет небольшую теплопроводность, а значит медленно и не равномерно нагревается.

Антипригарные свойства его весьма условны, и они становятся лучше только при длительном использовании – сковорода постепенно пропитывается маслом благодаря пористой структуре чугуна.

Такие сковороды достаточно тяжелые и за ними нужен тщательный уход – только ручная мойка, обязательное вытирание сухим полотенцем и смазывание растительным маслом после каждого использования, иначе сковорода будет ржаветь.

У наших бабушек не было выбора, и они ко всему относились с заботой и любовью, мы же предлагаем рассмотреть более современные и простые в уходе материалы.

Сковороды из нержавеющей стали обладают низкой теплопроводностью – медленно и не равномерно нагреваются и лишены антипригарных свойств, использовать их без антипригарного покрытия могут в основном хозяйки с опытом или любители тушеных блюд.

Покупать же сковороды из нержавеющей стали со специальной вставкой из алюминия и антипригарным покрытием не рационально, так как такие сковороды будут стоить минимум на 30% дороже, чем алюминиевые с таким же покрытием.

Алюминиевые сковороды с антипригарным покрытием имеют хорошие показатели теплопроводности в 4-5 раз выше, чем у стали и чугуна, поэтому быстро и равномерно нагреваются и способствуют равномерной прожарке продуктов.

Хорошее антипригарное покрытие не позволит вашей пище пригореть и даже сделает ее более полезной благодаря возможности использования минимума масла для жарки.

Компания TalleR использует антипригарные покрытия Xylan Plus и QuanTanium от Whitford это надежные покрытия с 2-х и 3-х слойным напылением толщиной 30-45 мкн.

Данные покрытия не содержат вредных веществ, таких как никель, тяжелые металлы и перфтороктановую кислоту (PFOA) и разрешены к использованию Комитетом пищевой и лекарственной промышленности США (FDA).

Перейдем к рассмотрению типов алюминиевых сковород по технологии производства: литые, кованые, штампованные

При штамповке используют готовые листы алюминия, из которых штампуются заготовки путем механической обработки. Такая технология проста и дешева, этим и объясняется относительно низкая стоимость посуды.

В процессе штамповки происходит изменение структуры металла, что несколько уменьшает его теплопроводные свойства и снижает устойчивость к деформации при нагреве. Производители компенсируют эти недостатки увеличением толщины алюминия или вставкой в дно антидеформационного диска.

Тонкостенный алюминий толщиной до 2.5 мм желательно использовать только для газовых плит.

Кованые сковороды делают методом прессовки под высоким давлением на специальных ковочных машинах. Сначала алюминий нагревают до температуры 480–400 °С., затем прессуют под давлением в 5000 тонн.

В ходе этого процесса происходит измельчение и вытягивание частиц алюминия в нужном направлении, что впоследствии приводит к волокнистой, плотной структуре металла. Благодаря ковке изделия по качеству становятся более прочными, не подвержены никакой деформации, чем при других технологиях производства.

Источник: https://varimtutru.com/litoy-alyuminiy-chto-eto-takoe/

Производство алюминия

Алюминий — химический элемент, занимающий лидирующее место в числе наиболее распространенных металлов в земной коре, а также и среди самых часто применяемых. Количество алюминия в земной коре достигает 9%. Он встречается лишь в форме соединений, которые представлены оксидом алюминия или глиноземом.

В глине находится примерно 30% этого оксида.
Этот металл занимает выгодную позицию среди прочих типов вследствие своих свойств. К которым относят, отличную пластичность, отличные показатели тепло- и электропроводности, и при этом небольшую плотность.

В этой статье мы расскажем о том, какие существуют особенности производства алюминия.

Технология производства алюминия

Получение алюминия включает такие технологические процессы:

  • добыча бокситов
  • добыча глинозема (окись алюминия) из алюминиевых руд (бокситов)
  • выделение из окиси алюминия.
  • конечная очистка алюминия.

Из 4-5 тонн бокситов можно получить около 2 тонн глинозема, из которых в итоге дальнейшей переработки получится 1 тонна алюминия.производство алюминия начинается с добычи алюминиевых руд, которых в природе существует несколько видов. Однако главным сырьем для получения металла является именно боксит.

Боксит является высококачественным, если в его составе присутствует более 50% оксида алюминия.Специалисты предоставляют информацию о количестве 18,6 миллиардов тонн бокситов, которые содержатся в земной коре. Сегодняшний уровень добычи гарантирует, что бокситов хватит еще на 100 лет.

В мире насчитывается семь бокситоносных районов:

  • Западная и Центральная Африка (больше всего в Гвинее)
  • Южная Америка: Бразилия, Венесуэла, Суринам, Гайана
  • Карибский регион: Ямайка
  • Океания и южная часть Азии: Австралия, Индия
  • Китай
  • Средиземноморье: Греция и Турция
  • Урал (Россия).

Бокситы бывают:

  • твердые, с высокой плотностью
  • рыхлые, которые легко рассыпаются. 

Цвет бокситов чаще всего — кирпично-красный, может быть рыжеватый или коричневый вследствие примеси оксида железа. Если железа в породе мало, бокситы будут белого или серого цвета. Однако, попадаются и руды желтого, темно-зеленого цвета и даже пестрые – с голубыми, красно-фиолетовыми или черными прожилками.
Добычу бокситов осуществляют открытым методом.

Особые машины «срезают» руду слой за слоем с поверхности земли и перевозят в пункт дальнейшей переработки. Но существуют на Земле и участки, в которых алюминиевая руда залегает на большой глубине. В таком случае, чтобы добыть руду, строят шахты. Самая глубокая шахта «Черемуховская-Глубокая» расположена в России, на Урале, ее глубина достигает 1550 метров.

Создание глинозема

Дальнейший процесс производства алюминия подразумевает получение глинозема, кислотным, щелочным и электролитическим способом. Кислотный метод применяется в работе с высокими сортами сырья.

В процессе щелочного метода происходит разложение алюминиевого раствора под действием введенной алюминиевой гидроокиси. После этого раствор выпаривают.
Наиболее востребованным можно назвать щелочной метод.

Известно, что алюминиевый раствор практически моментально начинают разлагаться, если ввести в него гидроокись алюминия. Этот метод состоит из двух этапов:

  • подготовка боксита. Происходит дробление руды. Ее измельчают в особых мельницах. В мельницы добавляют едкую щелочь, боксит и небольшое количество извести. Получившуюся пульпу отправляют на выщелачивание
  • выщелачивание боксита фактически является его химическим разложением при соприкосновении с водным раствором щелочи. В этой реакции гидраты окиси алюминия вступая в реакцию со щелочью переходят в раствор в виде алюмината натрия, а кремнезем, содержащийся в боксите, реагируя со щелочью, поступает в раствор в виде силиката натрия. Эти соединения реагируя между собой образуют нерастворимый натриевый алюмосиликат. В этом остатке содержатся окислы железа и титана, предающие остатку красный цвет. Этот остаток называют красным шламом. Красный шлам отделяют от алюминатного раствора при помощи промывки в сгустителях. При этом красный шлам выпадает в осадок, а оставшийся алюминатный раствор подвергают фильтрованию.

Фильтрация подразумевает отправление раствора в крупные емкости с мешалками. Из этого раствора, охлажденного до 60°С, при постоянном перемешивании получают гидроокись алюминия. В эти емкости с мешалками необходимо обязательно добавить большое количество твердой гидроокиси.
Самой последней стадией является обезвоживание гидроокиси алюминия. Ее осуществляют в трубчатых, постоянно вращающихся печах.

Электролиз и рафинация

Металлургическое производство алюминия продолжается при загрузке в электролизер анодной массы, глинозема, а также фторсоли. В процессе электролиза из глины выделяются окислы углерода, а также фтористые вещества в газообразном состоянии. В то же время определенный объем анодной массы расходуется как пена, которую снимают с поверхности самого электролита.Теоретически, чтобы получить 1 кг алюминия необходимо 1,9 кг глинозема.

В остальной его части находятся различные примеси. Тем не менее, практика показывает, что сырья затрачивается намного больше. Все зависит от типа глины, применяемого оснащения и ряда других факторов.В процессе электролиза основным аппаратом является особая ванна (электролизер), в которой имеются углеродистые блоки.

К ванне подведен электрический ток мощностью до 150000 А, а в самой емкости размещены угольные аноды, которые сгорают в конце выделения чистого кислорода и формирующие окись углерода.

Аноды бывают двух видов:

  • полученные при помощи обжига угольных блоков, вес которых превышает 1 тонну
  • самообжигающиеся, которые включают в себя угольные брикеты, подвергающиеся распеканию в процессе электролиза.

Электролиз окиси алюминия осуществляется в условиях температуры в электролизере около 970°С. Алюминий оседает на катоде. В завершении этого этапа алюминий приобретает товарный вид, к примеру, слитки, чушки или проволока.Центры производства алюминия

Самым крупным производителем алюминия можно назвать компанию «Русал», производящую свыше 4 млн. т алюминия ежегодно. Кроме этого, в перечень самых крупных изготовителей алюминия в России внесены:

  • Братский алюминиевый завод, создающий 30% российского алюминия и 4% мирового. Предприятие использует 75% электроэнергии, создаваемой на Братской ГЭС
  • предприятие «СУАЛ», которые специализируются на работе с алюминиевыми сплавами
  • компания АО «БАЗ», функционирующая на производстве и добыче глинозема и гидроксида алюминия
  • ВгАЗ — предприятие по изготовлению первичного алюминия.

Согласно информации геологической службы США, в 2016 году первое место в мире по производству алюминия занимал Китай. На втором месте – Россия, на третьем Канада.

Перечень предприятий алюминиевой промышленности Российской Федерации

Завод

Место расположения

Год ввода в эксплуатацию

КАЗ
Филиал ОАО «СУАЛ» «КАЗ-СУАЛ»

Мурманская область, г.Кандалакша

1951

НкАЗ
ОАО «РУСАЛ Новокузнецк»

Кемеровская область, г.Новокузнецк

1943

КрАЗ
ОАО «РУСАЛ Красноярск»

Красноярский край, г.Красноярск

1964

БрАЗ
ОАО «РУСАЛ Братск»

Иркутская область, г.Братск

1966

САЗ
АО «РУСАЛ Саяногорск»

Республика Хакасия, г.Саяногорск

1985, 2006

ИркАЗ
Филиал ОАО «РУСАЛ Братск» в г.Шелехове

Иркутская область, г.Шелехов

1960

НАЗ
Филиал ОАО «СУАЛ» «НАЗ-СУАЛ»

Республика Карелия, п.Надвоицы

1954

ВгАЗ
Филиал ОАО «СУАЛ» «ВгАЗ-СУАЛ»

г.Волгоград

1959

БоАЗ
ЗАО «Богучанский алюминиевый завод»

Красноярский край, Богучанский район

2015

АГК
ОАО «РУСАЛ Ачинск»

Красноярский край, г.Ачинск

1970

Пикалевский глиноземный завод
(«Базэл Цемент Пикалево»)

Ленинградская область, г.Пикалево

1959

БАЗ
Филиал ОАО «СУАЛ» «БАЗ-СУАЛ»

Свердловская область, г.Краснотурьинск

1943

УАЗ
Филиал ОАО «СУАЛ» «УАЗ-СУАЛ»

Свердловская область, г.Каменск-Уральский

1939

Источник: http://mining-prom.ru/cvetmet/alyuminiy/proizvodstvo-alyuminiya/

Понравилась статья? Поделиться с друзьями:
Металлы и их обработка
-- Сайдб лев (липк) -->
Как Отковать жало паяльника

Закрыть
Для любых предложений по сайту: [email protected]