Какой металл не растворяется в воде

Вода как растворитель — свойства, значение и примеры

Какой металл не растворяется в воде

Вода как растворитель играет предельно важную роль далеко не только в плане нашего быта. Исследователи давно говорят, что данное волшебное соединение является основой для образования жизни вообще. И именно поэтому его наличие выступает обязательным условием для существования чего-то более сложного, нежели неживая природа.

Растворимость тех или иных химических элементов напрямую связана с существованием воды, так как она чаще всего выступает той средой, которая преобразует все вокруг себя и создает новые формы органической и неорганической материи. 

Человек примерно на 70% состоит из воды (имеется ввиду кровь, межклеточная жидкость, плазма крови и прочие вещества), у большинства других существ этот показатель колеблется от 50 до 95%. Очевидно, что свойства данного соединения оказывают решающую роль на происходящие вокруг нас и внутри нас процессы синтеза, регенерации и многие другие. 

Это универсальный растворитель, который буквально формирует окружающий мир, постоянно преображает и обновляет его!

Свойства воды как растворителя

Вода – сложное вещество, отличающееся многими уникальными характеристиками, которые нельзя встретить больше нигде. 

Она способна растворить большую часть существующих в природе комплексных соединений, содержащих в своей структуре молекулы как с положительными, так и отрицательными ионами одновременно. 

При проведении так называемых кинетических исследований все растворы также изготавливаются на основе H2O.

Яркий пример особенности воды – при схожести по своей структуре с метаном CH4, она имеет температуру кипения выше на целых 250С! 

Важную роль играет также ее способность выступать одновременно либо донором, либо акцептором частиц водорода, благодаря чему проходят многие химические процессы. Химия говорит нам еще и о том, что вода выступает идеальным растворителем для диссоциирующих соединений. 

Интересно отметить, что по причине высокого уровня диэлектрической проницаемости, вода отлично экранирует электрические поля ионов друг от друга. Благодаря этому притяжение противоположно заряженных частиц в воде снижается примерно в 80 раз.

Какие вещества растворяются в воде

Даже если школьник ходит только в 3 класс, он наверняка может привести примеры материалов, которые боятся контакта с водой, или, другими словами, растворяются в ней и теряют свои свойства. 

Вот перечень только некоторых веществ такого типа:

  1. К хорошо растворимым относятся: соль, сахар, сода, хлориды, щелочные металлы и нитраты, а также бромиды. Воздух также претерпевает изменения при контакте с жидкой средой. Крахмал полностью растворим, спирт тоже.

  2. К средней степени взаимодействия относятся: бертолетова соль, метан, гипс, кислород, азот, другие химические элементы, например, сульфаты, некоторые газообразные вещества.

  3. Есть и такие материалы, которые являются нерастворимыми: сульфид меди, стекло, золото, керосин, серебро, растительный жир и многие другие. Правда, при некоторых условиях даже они не способны устоять от такого мощного воздействия.

В организме человека есть целая группа витаминов (С, В1, 2, 3(РР), В12 и другие), которые способны оказывать свое положительное воздействие на здоровье только в контакте с H2O. Это касается также и фолиевой кислоты, биотина и т. д.

Что не растворяется в воде

Существуют такие химические образования, которые не воспринимают воздействия воды в качестве растворителя совсем. 

Хороший пример: углерод С, который находится в простом карандаше, многие металлы и сплавы, типа алюминия, а также золото, серебро, медь. 

Такая ситуация складывается благодаря тому, что между молекулами и атомами нерастворимых веществ действуют сильные связи, которые водород разрушить не в состоянии. Полярное состояние молекулы также способствует большей прочности материала, который состоит из таких частиц.

Многие вещи, которые мы видим вокруг себя в быту, также являются нерастворимыми. Очень популярный пример – пластик. 

В мировом океане плавает огромное пятно из пластикового мусора, которое ежегодно растет, и количество пластмассы там совершенно не желает уменьшаться естественным путем. Его не могут никак переработать, что очень плохо для всей экосистемы. 

Именно поэтому экологи бьют тревогу и в ЕС уже сейчас планируется отказ от целлофановых пакетов, пластиковых стаканчиков и трубочек и тому подобные меры.

Значение воды как растворителя

Как уже упоминалось в начале статьи, рассматриваемые свойства воды являются ключевыми для всей живой и неживой природы нашей планеты. 

Если бы она не обладала этими характеристиками, то большинство химических процессов на Земле, в живых организмах, в органической природе бы просто остановилось. Картинка такого мира была бы очень неутешительна – темная пустыня без признаков жизни.

Роль воды настолько огромна, что именно ее определение в далеких планетах и галактиках является для астрономов основным занятием в надежде когда-то отыскать там если не разумное существование, то хотя бы зачатки жизни.

Источник: https://nauka.club/khimiya/voda-kak-rastvoritel.html

Химические и физические свойства железа, применение :

Какой металл не растворяется в воде

Одним из наиболее распространенных металлов в земной коре после алюминия считается железо. Физические и химические свойства его таковы, что оно обладает отличной электропроводностью, теплопроводностью и ковкостью, имеет серебристо-белый цвет и высокую химическую реакционную способность быстро коррозировать при высокой влажности воздуха или больших температурах. Находясь в мелкодисперсном состоянии, оно в чистом кислороде горит и самовоспламеняется на воздухе.

Начало истории железа

В третьем тысячелетии до н. э. люди стали добывать и научились обрабатывать бронзу и медь. Широкого применения из-за дороговизны они не получили. Продолжались поиски нового металла. История железа началась в первом веке до н. э. В природе его можно встретить только в виде соединений с кислородом. Для получения чистого металла необходимо отделить последний элемент.

Расплавить железо долго не удавалось, так как его надо было нагреть до 1539 градусов. И только с появлением сыродутных печей в первом тысячелетии до новой эры стали получать этот металл. На первых порах он был хрупким, содержал много шлаков. С появлением горнов качество железа значительно улучшилось. Дальнейшую обработку оно проходило в кузнеце, где ударами молота отделялся шлак.

Ковка стала одним из главных видов обработки металла, а кузнечное дело незаменимой отраслью производства. Железо в чистом виде – это очень мягкий металл. В основном его используют в сплаве с углеродом. Эта добавка усиливает такое физическое свойство железа, как твердость. Дешевый материал вскоре широко проник во все сферы деятельности человека и сделал переворот в развитии общества.

Ведь еще в древние времена железные изделия покрывались толстым слоем золота. Оно имело высокую цену по сравнению с благородным металлом.

Железо в природе

Одного алюминия в литосфере содержится больше, чем железа. В природе его можно встретить только в виде соединений. Трехвалентное железо, вступая в реакцию, окрашивает почву в бурый цвет и придает песку желтоватый оттенок. Оксиды и сульфиды железа разбросаны в земной коре, иногда наблюдаются скопления минералов, из которых впоследствии и добывают металл.

двухвалентного железа в некоторых минеральных источниках придает воде особый привкус. Ржавая вода, текущая из старых водопроводных труб, окрашивается за счет трехвалентного металла. Его атомы находятся и в организме человека. Они содержатся в гемоглобине (железосодержащем белке) крови, который снабжает организм кислородом и выводит углекислый газ.

В составе некоторых метеоритов содержится чистое железо, иногда встречаются целые слитки.

Какими физическими свойствами железо обладает?

Это пластичный серебристо-белого цвета металл с сероватым оттенком, имеющий металлический блеск. Он является хорошим проводником электрического тока и теплоты. Благодаря пластичности он прекрасно поддается ковке и прокатке.

Железо не растворяется в воде, но разжижается в ртути, плавится при температуре 1539 и кипит при 2862 градусов по Цельсию, имеет плотность 7,9 г/см³.

Особенностью физических свойств железа является то, что металл притягивается магнитом и после аннулирования внешнего магнитного поля хранит намагниченность. Используя эти свойства его можно применять для изготовления магнитов.

Химические свойства

Железо обладает следующими свойствами:

  • на воздухе и в воде легко окисляется, покрываясь ржавчиной;
  • в кислороде накаленная проволока горит (при этом образуется окалина в виде оксида железа);
  • при температуре 700–900 градусов по Цельсию вступает в реакцию с парами воды;
  • при нагревании реагирует с неметаллами (хлором, серой, бромом);
  • вступает в реакции с разбавленными кислотами, в результате получаются соли железа и водород;
  • не растворяется в щелочах;
  • способно вытеснить металлы из растворов их солей (железный гвоздь, в растворе медного купороса, покрывается красным налетом, — это выделяется медь);
  • в концентрированных щелочах при кипячении проявляется амфотерность железа.

Особенность свойств

Одним из физических свойств железа является ферромагнитность. На практике с магнитными свойствами этого материала приходится встречаться часто. Это — единственный металл, который обладает такой редкостной чертой.

Под действием магнитного поля происходит намагничивание железа. Сформировавшиеся магнитные свойства металл еще долго сохраняет и сам остается магнитом.

Такое исключительное явление объясняется тем, что структура железа содержит большое количество свободных электронов, способных передвигаться.

Запасы и добыча

Одним из самых распространенных элементов на земле является железо. По содержанию в земной коре занимает четвертое место. Известно множество руд, которые содержат его, например, магнитный и бурый железняк. Металл в промышленности получают в основном из руд гематита и магнетита при помощи доменного процесса. Вначале происходит его восстановление углеродом в печи при высокой температуре 2000 градусов по Цельсию.

Для этого сверху в доменную печь подают железную руду, кокс и флюс, а снизу нагнетается поток горячего воздуха. Также применяют и прямой процесс получения железа. Измельченную руду перемешивают со специальной глиной, получая окатыши. Далее их обжигают и с помощью водорода обрабатывают в шахтной печи, где оно легко восстанавливается. Получают твердое железо, а потом переплавляют его в электрических печах.

Чистый металл восстанавливают из оксидов при помощи электролиза водных растворов солей.

Преимущества железа

Основные физические свойства вещества железа дают ему и сплавам следующие преимущества перед другими металлами:

  • Обладают твердостью и прочностью, сохраняя упругость. У разных сплавов эти качества неодинаковы и зависят от легирующих добавок, способов производства и термообработки.
  • Большое разнообразие чугуна и сталей позволяют использовать их для любых нужд в народном хозяйстве.
  • Высокие магнитные свойства металла незаменимы для изготовления магнитопроводов.
  • Выполнимость легкой механической обработки, благодаря физическим свойствам железа, дает возможность из его сплавов получать листы, прутки, балки, трубы, фасонные профили.
  • Значительная ковкость материала позволяет использовать его для декоративных изделий.
  • Низкая стоимость сплавов.

Недостатки

Кроме большого числа положительных качеств, есть и ряд отрицательных свойств металла:

  • Изделия подвержены коррозии. Для устранения этого нежелательного эффекта с помощью легирования получают нержавеющие стали, а в остальных случаях делают специальную антикоррозийную обработку конструкций и деталей.
  • Железо накапливает статическое электричество, поэтому изделия, содержащие его, подвергаются электрохимической коррозии и также требуют дополнительной обработки.
  • Удельный вес металла составляет 7,13 г/см³. Это физическое свойство железа придает конструкциям и деталям повышенный вес.

Состав и структура

У железа по кристаллическому признаку есть четыре модификации, которые отличаются структурой и параметрами решетки. Для выплавки сплавов именно наличие фазовых переходов и легирующих добавок имеет существенное значение. Различают следующие состояния:

  • Альфа-фаза. Она сохраняется до 769 градусов по Цельсию. В этом состоянии железо сохраняет свойства ферромагнетика и обладает объемно-центрированной решеткой кубического типа.
  • Бета-фаза. Существует при температуре от 769 до 917 градусов по Цельсию. Имеет немного другие параметры решетки, чем в первом случае. Все физические свойства железа остаются прежними за исключением магнитных, их оно утрачивает.
  • Гамма-фаза. Строение решетки становится гранецентрированным. Такая фаза проявляется в диапазоне 917–1394 градусов Цельсия.
  • Омега-фаза. Такое состояние металла появляется при температуре выше 1394 градусов Цельсия. От прежней отличается только параметрами решетки.

Железо – самый востребованный металл в мире. Больше 90 процентов всего металлургического производства приходится именно на него.

Применение

Люди начали использовать сначала метеоритное железо, которое ценили выше золота. С тех пор область применения этого металла только расширялась. Ниже представлено применение железа, на основе его физических свойств:

  • ферромагнитные оксиды используют для производства магнитных материалов: промышленных установок, холодильников, сувениров;
  • оксиды железа применяют как минеральные краски;
  • хлорид железа незаменим в радиолюбительской практике;
  • сульфаты железа используют в текстильной промышленности;
  • магнитная окись железа – один из важных материалов для производства устройств долговременной компьютерной памяти;
  • ультрадисперсный порошок железа находит применение в черно-белых лазерных принтерах;
  • прочность металла позволяет изготовлять оружие и броню;
  • износостойкий чугун можно использовать для производства тормозов, дисков сцепления, а также деталей для насосов;
  • жаростойкий – для доменных, термических, мартеновских печей;
  • жаропрочный – для компрессорного оборудования, дизельных двигателей;
  • высококачественная сталь используется для газопроводов, корпуса отопительных котлов, сушилок, стиральных и посудомоечных машин.

Заключение

Под железом часто подразумевают не сам метал, а его сплав — низкоуглеродистую электротехническую сталь. Получение чистого железа довольно сложный процесс, и поэтому его используют только для производства магнитных материалов. Как уже отмечалось, что исключительное физическое свойство простого вещества железа – это ферромагнетизм, т. е.

способность намагничиваться в присутствии магнитного поля. Магнитные свойства чистого металла до 200 раз превышают такие же показатели технической стали. На это свойство влияет и зернистость металла. Чем крупнее зерно, тем выше магнитные свойства. В некоторой степени оказывает влияние и механическая обработка.

Такое чистое железо, удовлетворяющее этим требованиям, используют для получения магнитных материалов.

Источник: https://www.syl.ru/article/369165/himicheskie-i-fizicheskie-svoystva-jeleza-primenenie

Растворимость меди в воде: растворяется ли и почему?

Какой металл не растворяется в воде

› О воде ›

При изучении всех химических элементов особое внимание уделяется их способности растворяться в воде. Поскольку растворимость в воде меди низкая, процесс коррозии практически не наблюдается, а благодаря особым химическим свойствам соединения металла с другими элементами используются в самых разных сферах промышленности.

Основные свойства

Медь представляет собой металл с розовым либо красноватым оттенком. Радиус её положительно заряженных ионов характеризуется такими значениями:

  • при координационном показателе равном 6 – до 0,091 нм;
  • при координационном показателе равном 2 – до 0,06 нм.

Атом данного элемента имеет размер радиуса 0,128 нм, который соответствует электрону 1,8 эВ. Поскольку медь является переходным металлом, его электроотрицательность, согласно шкале Полинга, равна 1,9. Помимо этого, данный элемент характеризуется различными значениями степени окисления.

К физическим свойствам меди относится также теплопроводность, которая при температуре 20-100°C соответствует 394 Вт/м*К. Что касается электропроводности, то она составляет 55,5-58 МСм. Этот металл не способен вытеснять водород из кислот и воды. Величина его кристаллической решетки гранецентрированного кубического типа равна 0,36150 нм. Температура 1082°C обуславливает процесс плавления этого химического элемента, а 26570 – процесс его кипения.

Растворимость в воде

Растворимость – это способность образовывать однородные смеси или растворы в процессе взаимодействия какого-то соединения с другим веществом. Их составляющие представляют собой отдельные частицы – атомы, молекулы, ионы. Концентрация вещества говорит об уровне его растворимости в другом веществе. Обычно она выражается в процентах, весовых либо объёмных долях.

Многие интересуются, растворяется ли медь в воде. Как и для других твердых соединений,протекание данного процесса обусловлено только температурными изменениями. Зависимость рассчитывается методом кривых. При очень низком показателе (то есть малой концентрации вещества в растворителе) считается, что вещество нерастворимо. Действие морской воды не вызывает у меди коррозию, что является доказательством его инертности в нормальных условиях.

В пресной воде медь практически не растворяется. Однако влажная среда и влияние углекислого газа способствуют образованию на металле зеленой пленкой. Если говорить о её одновалентных соединениях, в частности о солях, то они малорастворимы.

Данные вещества быстро окисляются и в итоге образуются двухвалентные соединения. Именно эти соли имеют способность растворяться в воде. В результате диссоциации они полностью распадаются на ионы.

Источник: https://vseowode.ru/prosto-o-vode/rastvorimost-v-vode-medi.html

Коррозия алюминия

Коррозия алюминия – разрушение металла под влиянием окружающей среды.

Для реакции Al3+ +3e → Al стандартный электродный потенциал алюминия составляет   -1,66 В.

Температура плавления алюминия — 660 °C.

Плотность алюминия — 2,6989 г/см3 (при нормальных условиях).

Алюминий, хоть и является активным металлом, отличается достаточно хорошими коррозионными свойствами. Это можно объяснить способностью пассивироваться во многих агрессивных средах.

Коррозионная стойкость алюминия зависит от многих факторов: чистоты металла, коррозионной среды, концентрации агрессивных примесей  в среде, температуры и т.д. Сильное влияние оказывает рН растворов. Оксид алюминия на поверхности металла образуется только в интервале рН от 3 до 9!

Очень сильно влияет на коррозионную стойкость Al его чистота.  Для изготовления химических агрегатов, оборудования  используют только металл высокой чистоты (без примесей), например  алюминий марки АВ1 и АВ2.

Коррозия алюминия не наблюдается только в тех средах, где на поверхности металла образуется защитная оксидная пленка.

ЭТО ИНТЕРЕСНО:  Как делятся сварные швы по виду сварного соединения

При нагревании алюминий может реагировать с некоторыми неметаллами:

2Al + N2 → 2AlN – взаимодействие алюминия и азота с образованием нитрида алюминия;

 4Al + 3С → Al4С3 – реакция взаимодействия алюминия с углеродом с образованием карбида алюминия;

2Al + 3S → Al2S3 – взаимодействие алюминия и серы с образованием сульфида алюминия.

Коррозия алюминия на воздухе (атмосферная коррозия алюминия)

Алюминий при взаимодействии с воздухом переходит в пассивное состояние. При соприкосновении чистого металла с воздухом на поверхности алюминия мгновенно появляется тонкая защитная пленка оксида алюминия. Далее рост пленки замедляется. Формула оксида алюминия – Al2O3 либо  Al2O3•H2O.

Реакция взаимодействия алюминия с кислородом:

4Al + 3O2 → 2Al2O3.

 Толщина этой оксидной пленки составляет от 5 до 100 нм (в зависимости от условий эксплуатации). Оксид алюминия обладает хорошим сцеплением с поверхностью, удовлетворяет условию сплошности оксидных пленок. При хранении на складе, толщина оксида алюминия на поверхности металла составляет около 0,01 – 0,02 мкм. При взаимодействии с сухим кислородом – 0,02 – 0,04 мкм. При термической обработке алюминия толщина оксидной пленки может достигать 0,1 мкм.

Алюминий достаточно стоек как на чистом сельском воздухе, так и находясь в промышленной атмосфере (содержащей пары серы, сероводород, газообразный аммиак, сухой хлороводород и т.п.). Т.к. на коррозию алюминия в газовых средах не оказывают никакого влияния сернистые соединения – его применяют для  изготовления установок переработки сернистой нефти, аппаратов вулканизации каучука.

Коррозия алюминия в воде

Коррозия алюминия почти не наблюдается при взаимодействии с чистой пресной, дистиллированной водой. Повышение температуры до 180 °С особого воздействия не оказывает. Горячий водяной пар на коррозию алюминия влияния также не оказывает. Если в воду, даже при комнатной температуре, добавить немного щелочи – скорость коррозии алюминия в такой среде немного увеличится.

https://www.youtube.com/watch?v=fFuA8XC8tIM

Взаимодействие чистого алюминия (не покрытого оксидной пленкой) с водой можно описать  при помощи уравнения реакции:

2Al + 6H2O = 2Al(OH)3 + 3H2.

 При взаимодействии с морской водой чистый алюминий начинает корродировать, т.к. чувствителен к растворенным солям. Для эксплуатации алюминия в морской воде в его  состав вводят небольшое количество магния и кремния. Коррозионная стойкость алюминия и его сплавов, при воздействии морской воды, значительно снижается, если в состав метала будет входить медь.

Коррозия алюминия в кислотах

С повышением чистоты алюминия его стойкость в кислотах увеличивается.

Коррозия алюминия в серной кислоте

Для алюминия и его сплавов очень опасна серная кислота (обладает окислительными свойствами) средних концентраций. Реакция с разбавленной серной кислотой описывается уравнением:

 2Al + 3H2SO4(разб) → Al2(SO4)3 + 3H2.

Концентрированная холодная серная кислота не оказывает никакого влияния. А при нагревании алюминий  корродирует:

2Al + 6H2SO4(конц) → Al2(SO4)3 + 3SO2 + 6H2O.

При этом образуется растворимая соль – сульфат алюминия.

Al стоек в олеуме (дымящая серная кислота) при температурах до 200 °С. Благодаря этому его используют для производства хлорсульфоновой кислоты (HSO3Cl) и олеума.

Коррозия алюминия в соляной кислоте

В соляной кислоте алюминий или его сплавы быстро растворяются (особенно при повышении температуры). Уравнение коррозии:

2Al + 6HCl → 2AlCl3 + 3H2.

Аналогично действуют растворы  бромистоводородной (HBr),  плавиковой (HF) кислот.

Коррозия алюминия в азотной кислоте

Концентрированный раствор азотной кислоты отличается высокими окислительными свойствами. Алюминий в азотной кислоте при нормальной температуре исключительно стоек (стойкость выше, чем у нержавеющей стали 12Х18Н9). Его даже используют для производства концентрированной азотной кислоты методом прямого синтеза

При нагревании коррозия алюминия в азотной кислоте проходит по реакции:

Al + 6HNO3(конц) → Al(NO3)3 + 3NO2 + 3H2O.

Коррозия алюминия в уксусной кислоте

Алюминий обладает достаточно высокой стойкостью к воздействию уксусной кислоты любых концентраций, но только если температура не превышает 65 °С. Его используют для производства формальдегида и уксусной к-ты.  При более высоких температурах алюминий растворяется (исключение составляют концентрации кислоты 98 – 99,8%).

В бромовой,  слабых растворах хромовой (до10%), фосфорной (до 1%) кислотах при комнатной температуре алюминий устойчив.

Слабое влияние на алюминий и его сплавы оказывают лимонная, масляная, яблочная, винная, пропионовая кислоты, вино, фруктовые соки.

Щавелевая, муравьиная, хлорорганические кислоты разрушают металл.

На коррозионную стойкость алюминия очень сильно влияет парообразная и капельножидкая ртуть. После недолгого контакта металл и его сплавы интенсивно корродируют, образуя амальгамы.

Коррозия алюминия в щелочах

Щелочи легко растворяют защитную оксидную пленку на поверхности алюминия, он начинает реагировать с водой, в результате чего металл растворяется с выделением водорода (коррозия алюминия с водородной деполяризацией).

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2;

2(NaOH•H2O) + 2Al → 2NaAlO2 + 3H2.

Образуются алюминаты.

Также оксидную пленку разрушают соли ртути, меди и ионы хлора.

Источник: https://www.okorrozii.com/korrozia-aliuminiya.html

Серная кислота — химические свойства и промышленное производство

Физические свойства серной кислоты:
Тяжелая маслянистая жидкость («купоросное масло»);
плотность 1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным нагревом; t°пл. = 10,3°C, t°кип. = 296°С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание бумаги, дерева, сахара).

Теплота гидратации настолько велика, что смесь может вскипать, разбрызгиваться и вызывать ожоги. Поэтому необходимо добавлять кислоту к воде, а не наоборот, поскольку при добавлении воды к кислоте более легкая вода окажется на поверхности кислоты, где и сосредоточится вся выделяющаяся теплота.

Промышленное производство серной кислоты (контактный способ):

1)      4FeS2 + 11O2 → 2Fe2O3 + 8SO2

2)      2SO2 + O2 V2O5→ 2SO3

3)      nSO3 + H2SO4 → H2SO4·nSO3 (олеум)

Измельчённый очищенный влажный пирит (серный колчедан) сверху засыпают в печь для обжига в «кипящем слое«. Снизу (принцип противотока) пропускают воздух, обогащённый кислородом.
Из печи выходит печной газ, состав которого: SO2, O2, пары воды (пирит был влажный) и мельчайшие частицы огарка (оксида железа).

Газ очищают от примесей твёрдых частиц (в циклоне и электрофильтре) и паров воды (в сушильной башне).
В контактном аппарате происходит окисление сернистого газа с использованием катализатора V2O5 ( пятиокись ванадия) для увеличения скорости реакции. Процесс окисления одного оксида в другой является обратимым. Поэтому подбирают оптимальные условия протекания прямой реакции — повышенное давление (т.

к прямая реакция идет с уменьшением общего объема) и температура не выше 500 С ( т.к реакция экзотермическая).

В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой.
Поглощение водой не используют, т.к оксид серы растворяется в воде с выделением большого количества теплоты, поэтому образующаяся  серная кислота закипает и превращается в пар. Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3

Химические свойства серной кислоты:

H2SO4 — сильная двухосновная кислота, одна из самых сильных минеральных кислот, из-за высокой полярности связь Н – О легко разрывается.

1)  В водном растворе серная кислота диссоциирует, образуя ион водорода и кислотный остаток:
H2SO4 = H+ + HSO4—;
HSO4— = H+ + SO42-.Суммарное уравнение:

H2SO4 = 2H+ + SO42-.

2)  Взаимодействие серной кислоты с металлами:Разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:

Zn0 + H2+1SO4(разб) → Zn+2SO4 + H2

3)   Взаимодействие серной кислоты с основными оксидами:
CuO + H2SO4 → CuSO4 + H2O

4)    Взаимодействие серной кислоты с гидроксидами:
H2SO4 + 2NaOH → Na2SO4 + 2H2O
H2SO4 + Cu(OH)2 → CuSO4 + 2H2O

5)     Обменные реакции с солями:
BaCl2 + H2SO4 → BaSO4↓ + 2HCl
Образование белого осадка BaSO4 (нерастворимого в кислотах) используется для обнаружения серной кислоты и растворимых сульфатов (качественная реакция на сульфат ион).

Особые свойства концентрированной H2SO4 :

1)     Концентрированная серная кислота является сильным окислителем; при взаимодействии с металлами (кроме Au, Pt) восстанавливаться до S+4O2, S0 или H2S-2  в зависимости от активности металла.

Без нагревания не реагирует  с Fe, Al, Cr – пассивация.

  При взаимодействии с металлами, обладающими переменной валентностью, последние окисляются до более высоких степеней окисления, чем в случае с разбавленным раствором кислоты: Fe0 Fe3+, Cr0 Cr3+, Mn0 Mn4+,Sn0 Sn4+

Активный металл

8 Al + 15 H2SO4(конц.)→4Al2(SO4)3 + 12H2O + 3H2S
4│2Al0 – 6e— → 2Al3+ — окисление
3│ S6+ + 8e → S2– восстановление

4Mg+ 5H2SO4 → 4MgSO4 + H2S­ + 4H2O

Металл средней активности

2Cr + 4 H2SO4(конц.)→ Cr2(SO4)3 + 4 H2O + S
1│ 2Cr0 – 6e →2Cr3+— окисление
1│ S6+ + 6e → S0 – восстановление

Металл малоактивный

2Bi + 6H2SO4(конц.)→ Bi2(SO4)3 + 6H2O + 3SO2
1│ 2Bi0 – 6e → 2Bi3+ – окисление
3│ S6+ + 2e →S4+ — восстановление

2Ag + 2H2SO4 →Ag2SO4 + SO2­ + 2H2O

 2)     Концентрированная серная кислота окисляет некоторые неметаллы как правило до максимальной степени окисления, сама восстанавливается до S+4O2:

С + 2H2SO4(конц) → CO2­ + 2SO2­ + 2H2O

Источник: http://himege.ru/sernaya-kislota-ximicheskie-svojstva-i-promyshlennoe-proizvodstvo/

Урок 9. Ионы в водном растворе – HIMI4KA

Архив уроков › Основные законы химии

В уроке 9 «Ионы в водном растворе» из курса «Химия для чайников» рассмотрим растворение соли в воде, а также электролиз растворов и расплавов солей; познакомимся с законами Фарадея для электролиза и научимся находить продукты электролиза. Базой знаний для данного урока послужит материал из урока 8 «строение солей».

Растворение соли в воде

Из прошлого урока нам известно, что соли трудно расплавить и еще сложнее довести ее до кипения, однако, полярные жидкости, такие как вода, способны растворять соли без особых усилий, поскольку неполные положительные и отрицательные заряды на атомах полярных молекул воды в какой-то мере заменяют собой положительные и отрицательные ионы в кристаллической решетке соли. Другими словами, молекулы воды помогают разрушить кристалл соли.

Из рисунка видно, что происходит с положительными и отрицательными ионами при растворении в воде кристалла поваренной соли NaCl. Каждый ион Na+ окружается молекулами воды, которые обращены к нему отрицательно заряженными атомами кислорода. То же самое происходит с ионами Cl—, которые окружаются молекулами воды, обращенными к нему своими положительно заряженными атомами водорода.

Ионы из кристалла соли оказываются гидратированными, а сам процесс присоединения молекул воды к ионам получил название — гидратация. Если в результате процесса гидратации устойчивость ионов, переходящих в раствор, становится больше их устойчивости в кристаллической решетке, то происходит растворение соли в воде. Хлорид натрия является отличным примером растворимой соли.

И, наоборот, если энергия гидратации слишком мала, то кристалл является более устойчивой формой и не растворяется в воде. Примером таких нерастворимых солей является сульфат бария (BaSO4) и хлорид серебра (AgCl). Когда кристалл растворяется, он не просто распадается на ионы, а разъединяется на ионы молекулами жидкости, в которой происходит растворение.

 Неполярные жидкости (например, бензин С8H18) НЕ способны разъединять ионы в кристаллической решетке солей.

Электролиз растворов и расплавов солей

Металлы хорошо проводят ток — это знает каждый школьник. Электропроводность в металлах вызвана перемещением электронов в них, но ионы металла остаются неподвижными.

Хотя кристаллы солей не проводят ток, зато растворы и расплавы солей это умеют и практикуют, так как анионы (отрицательные ионы) и катионы (положительные ионы) могут направленно перемещаться в противоположные направления, если приложить напряжение.

Подвижность ионов соли оказывается еще большей, если она подверглась процессу гидратации.

Давным-давно английский ученый Майкл Фарадей расплавил соль (нагрев ее выше 801ºС), затем погрузил в расплав два электрода (катод и анод), а после взял и пропустил электрический ток через расплавленную соль. После этих манипуляций он обратил внимание что на электродах начали протекать химические реакции: ионы натрия начали мигрировать к катоду (где электроны поступают в расплав) и восстанавливаться там до металлического натрия

Хлорид-ионы мигрируют в другом направлении-в сторону анода, отдают ему свои избыточные электроны и окисляются до газообразного хлора

Все это можно изобразить с помощью полной реакции, которая представляет собой разделение NaCl на составляющие его элементы:

Весь процесс получил название электролиз, что означает «разрыв на части при помощи электричества». Для электролиза не обязательно расплавлять соль, можно также использовать обычный водный раствор соли, ведь подвижность ионов оказывается еще большей, если соль подверглась процессу гидратации. Но тогда полная реакция будет выглядеть иначе, и на катоде будет выделяться не металлический натрий, а газообразный водород:

  • Na+ + Cl— + H2O → Na+ + ½Cl2 + ½H2 + OH—

Надеюсь, что вам стало интересно, почему продуктом электролиза водного раствора является не Na (как это было в расплавленной соли), а ½H2. Объясняется просто: часть молекул H2O диссоциируют на ионы H+ и OH—.

Поскольку ион H+ обладает большим сродством к электрону (то есть сильнее его притягивает), нежели ион Na+, то ионы H+ первыми достигают катода, где незамедлительно восстанавливают недостающий электрон и превращаются из иона в полноценный газ H2, а ионы Na+ так и остаются в растворе.

Вот вам плюшка с продуктами электролиза водного раствора солей, может пригодится — может нет, но лучше законспектируйте:

А Фарадей тем временем не сидел без дела, а наблюдал, проводил опыты, использовал другие электролиты, увеличивал-уменьшал заряд и опять наблюдал. В конце концов он заметил взаимосвязь между количеством подаваемого электричества и количеством получаемых веществ. Установленные им закономерности называются законы Фарадея для электролиза. Сформулируем их:

  1. Пропускание одного и того же электрического заряда через электролитическую ячейку всегда приводит к количественно одинаковому химическому превращению в данной реакции. Масса элемента, выделяемого на электроде, пропорциональна количеству заряда, пропущенному через электролитическую ячейку.
  2. Для выделения на электроде 1 моля вещества, которое в процессе электрохимической реакции приобретает или теряет 1 электрон, необходимо пропустить через ячейку 96485 кулонов (Кл) электричества. Если в реакции принимает участие N электронов, для выделения моля продукта необходимо N·96485 Кл электричества.

Количество электричества, равное 96485 Кл, получило название 1 фарадей и обозначается символом F. Законы Фарадея становятся очевидными, если принять во внимание, что 1 F — это просто заряд 1 моля электронов, т.е. 6,022 1023 электронов. Множитель 6,022-1023, позволяющий переходить от индивидуальных молекул к молям вещества, одновременно позволяет перейти и от 1 электронного заряда к 1 F электрического заряда.

 Разумеется, в свое время Фарадей ничего не знал ни о числе Авогадро, ни о заряде электрона. Однако из проведенных экспериментов он смог сделать вывод, что заряды на ионах кратны некоторой элементарной единице заряда, так что 96485 Кл электричества соответствуют 1 молю таких единиц. Термин электрон впервые появился в 1881 г.; его ввел английский физик Дж.Стоней для обозначения элементарной единицы ионного заряда.

Применять термин «электрон» к реальной отрицательно заряженной частице начали спустя еще 10 лет.

1 пример. Запишите уравнения реакций, протекающих при пропускании электрического тока через расплавленную соль NaCl. Сколько граммов натрия и хлора выделится при пропускании 1 F электричества через электролитическую ячейку?

Решение: Уравнение реакции, протекающей на катоде: Na+ + е— → Na, а уравнение 1 анодной реакции: Сl— → Cl2 + е—. Когда через расплавленную соль NaCl проходит 1 моль электронов (1 F), каждый электрон восстанавливает 1 ион натрия, в результате чего образуется 1 моль атомов натрия.

Следовательно, на катоде выделяется 22,990 г Na. На аноде происходит удаление 1 моля электронов от 1 моля хлорид-ионов, после чего остается 1 моль атомов хлора, которые попарно соединяются, образуя 1/2 моля молекул Сl2.

Следовательно, масса газообразного хлора, выделяющегося на аноде, должна быть равна 35,453 г (что равно атомной массе Сl, или половине молекулярной массы Сl).

Пример 2. Сколько граммов металлического магния и газообразного хлора выделяется при пропускании 1 F электричества через электролитическую ячейку с расплавленным хлоридом магния, MgCl2?
Решение: На катоде происходит реакция Mg2+ + 2е— → Mg, а на аноде — реакция 2Сl— → Сl2 + 2е—.

Поскольку для восстановления каждого иона Mg2+ необходимо 2 электрона, 1 моля электронов хватит только для восстановления половины моля ионов магния, таким образом на катоде должно выделиться 12,153 г магния. (Атомная масса магния равна 24,305 г/моль.) Как и в примере 1, на аноде окислится 1 моль ионов Сl— и выделится половина моля, т.е.

35,453 г, газообразного Сl2.

Пример 3. Основным промышленным способом получения металлического алюминия является электролиз расплавленных солей, содержащих ионы Аl3 +. Определите величину электрического заряда, в фарадеях и кулонах, который должен быть пропущен через расплав для получения 1 кг металла.

Решение: 1 кг алюминия содержит 1000 г / 26,98 г·моль-1 = 37,06 моля атомов. Поскольку на выделение каждого атома алюминия необходимо 3 электрона, на 37,06 моля атомов потребуется 3·37,06 = 111,2 моля электронов.

ЭТО ИНТЕРЕСНО:  Как травить узор на металле

Это количество электричества эквивалентно 111,2F, или 10 730 000 Кл.

Надеюсь урок 9 «Ионы в водном растворе» был познавательным и понятным. Если у вас возникли вопросы, пишите их в комментарии. Если вопросов нет, то переходите к уроку 10 «Ионы в газе».

Источник: https://himi4ka.ru/arhiv-urokov/urok-9-iony-v-vodnom-rastvore.html

Тема №12 «Соли» | CHEM-MIND.com

Определение солей в рамках теории диссоциации. Соли принято делить на три группы: средние, кислые и основные. В средних солях все атомы водорода соответствую­щей кислоты замещены на атомы металла, в кислых солях они заме­щены только частично, в основных солях группы ОН соответствующего основания частично замещены на кислотные остатки.

Существуют также некоторые другие типы солей, например двой­ные соли, в которых содержатся два разных катиона и один анион: СаСО3 • MgCO3 (доломит), КСl • NaCl (сильвинит), KAl(SO4)2 (алюмока­лиевые квасцы); смешанные соли, в которых содержится один катион и два разных аниона: СаОСl2 (или Са(ОСl)Сl); комплексные соли, в со­став которых входит комплексный ион, состоящий из центрального атома, связанного с несколькими лигандами: K4[Fe(CN)6] (желтая кровяная соль), K3[Fe(CN)6] (красная кровяная соль), Na[Al(OH)4], [Ag(NH3)2]Cl; гидратные соли (кристаллогидраты), в которых содержатся молекулы кристаллизационной воды: CuSO4 • 5H2O(медный купорос), Na2SO4 • 10Н2О (глауберова соль).

Название солей образуют из названия аниона, за которым следу­ет название катиона.

Для солей бескислородных кислот к названию неметалла добавля­ют суффикс ид, например хлорид натрия NaCl, сульфид железа(Н) FeS и др.

При наименовании солей кислородсодержащих кислот к латинскому корню названия элемента добавляют в случае высших степеней окисле­ния окончание am, в случае низших степеней окисления окончание -ит.

В названиях некоторых кислот для обозначения низших степеней окисле­ния неметалла используют приставку гипо-, для солей хлорной и марган­цовой кислот используют приставку пер-, например: карбонат кальция СаСО3, сульфат железа(III) Fe2(SO4)3, сульфит железа(II) FeSO3, гипо­хлорит калия КОСl, хлорит калия КОСl2, хлорат калия КОСl3, перхлорат калия КОСl4, перманганат калия КМnO4, дихромат калия К2Сг2O7.

Кислые и основные соли можно рассматривать как продукт непол­ного превращения кислот и оснований. По международной номен­клатуре атом водорода, входящий в состав кислой соли, обозначают приставкой гидро-, группу ОН — приставкой гидрокси, NaHS — ги­дросульфид натрия, NaHSO3 — гидросульфит натрия, Mg(OH)Cl — гидроксихлорид магния, Аl(ОН)2Сl — дигидроксихлорид алюминия.

В названиях комплексных ионов сначала указывают лиганды, за­вершают названием металла с указанием соответствующей степени окисления (римскими цифрами в скобках).

В названиях комплекс­ных катионов используют русские названия металлов, например: [Cu(NH3)4]Cl2 — хлорид тетраамминмеди(П), [Ag(NH3)2]2SO4 — суль­фат диамминсеребра(1).

В названиях комплексных анионов исполь­зуют латинские названия металлов с суффиксом -ат, например: К[Аl(ОН)4] — тетрагидроксиалюминат калия, Na[Cr(OH)4] — тетра- гидроксихромат натрия, K4[Fe(CN)6] — гексацианоферрат(Н) калия.

Названия гидратных солеи (кристаллогридратов) образуют­ся двумя способами. Можно воспользоваться системой названий комплексных катионов, описанной выше; например, медный купо­рос [Cu(H2O)4]SO4 • Н20 (или CuSO4 • 5Н2O) можно назвать сульфат тетрааквамеди(П).

Однако для наиболее известных гидратных со­лей чаще всего число молекул воды (степень гидратации) указывают численной приставкой к слову «гидрат», например: CuSO4 • 5Н2O — пентагидрат сульфата меди(И), Na2SO4 • 10Н2О — декагидрат суль­фата натрия, СаСl2 • 2Н2O — дигидрат хлорида кальция.

Номенклатура солей

Растворимость солей

По растворимости в воде соли делятся на раствори­мые (Р), нерастворимые (Н) и малорастворимые (М). Для определения растворимости солей пользуются таблицей растворимости кислот, осно­ваний и солей в воде. Если таблицы под рукой нет, то можно воспользоваться правилами. Их легко запомнить.

1. Растворимы все соли азотной кислоты — ни­траты.

2. Растворимы все соли соляной кислоты — хло­риды, кроме AgCl(Н), PbCl2(М).

3. Растворимы все соли серной кислоты — суль­фаты, кроме BaSO4(Н)

Источник: https://www.chem-mind.com/2017/03/20/%D1%82%D0%B5%D0%BC%D0%B0-%E2%84%9611-%D1%81%D0%BE%D0%BB%D0%B8/

Растворение в воде: что, как и при каких условиях

Вода — универсальный растворитель, приспособленный к любомувиду жизнедеятельности. Она растворяет почти любые вещества, в частности ионныеи полярные соединения. Уникальные свойства воздействия характеризуются высокойдиэлектрической проницаемостью. В природе вода содержит массу веществ исоединений, попавших в неё так или иначе.

Процесс растворения

На первый взгляд, процесс распада прост, но его суть гораздосложнее, чем выглядит. Именно поэтому существуют вещества, растворимые в воде инерастворимые в других жидкостях. Создание раствора связано с физическимипроцессами: диффузия описывает само разжижение частиц в результатеразмешивания. Гидратация является процессом, при котором образуются химическиесвязи воды с добавленным веществом.

Растворение веществ характеризуется:

  • произошедшей гидратацией;
  • изменением цвета раствора;
  • тепловыми эффектами (при некоторых условиях) и пр. факторами.

Доказательством произошедшего смешивания выступает изменениецвета раствора. Например, примесь сульфата меди (которая изначально белогоцвета) окрашивает воду в интенсивный голубой цвет. Если за окраску отвечаютхимические свойства оснований, то выделение теплоты происходит из-за физическихпричин. Таким образом, это полностью физико-химический процесс.

Что такое раствор

Раствор — однородная смесь веществ с растворителем.Растворимые вещества распадаются под действием полярных молекул воды на мелкиечастицы, в результате смешиваясь до полной однородности. Водные растворы бываютбесцветными и окрашенными, но неизменно одно — они прозрачные вне зависимостиот цвета.

Не имеет значения, добавлять воду в какое-то вещество илисыпать его. Также процесс постепенно произойдет и без вмешательства(размешивания), в некоторых случаях образуется видимый осадок. В других случаях,раствор окрашивается в цвет добавленного вещества, но обязательно остаетсяпрозрачным на просвет.

Не растворившиеся вещества оседают на дно плотным слоем поддавлением воды. Либо могут оставаться на поверхности в виде неравномерныхчастиц. Жидкости образуют слои, поскольку имеют разную плотность с водой.Например, растительное масло образует пленку на поверхности.

Какие вещества растворяются в воде, а какие — нет

Вода действительно универсальна и уникальна по своимсвойствам. Иногда требуется сильнее перемешать, чтобы добиться полногоразрушения частиц, но в большинстве своем вода размывает любые соединения.Однако есть вещества, которые не подвластны даже ей.

Существует условие, по которому количество воды должно бытьпревышающим, чтобы вещества именно разошлись, а не осели на дно. На примерепищевой соли: при добавлении большого количества, она перестает растворяется иобразует плотный, напоминающий камень, слой.

Кроме того, от некоторых веществ жидкость можно очистить, отдругих — нет. Так, например, ртуть в воде растворяется и процесс очищенияневозможен. Другие похожие вещества из встречаемых в быту: поваренная и морскаясоль, сахар любого типа, пищевая сода, крахмал. Они невидимые и склоны кокрашиванию воды, но частицы настолько мелкие, что они попросту проходятфильтрацию вместе с раствором. Сыпучие вещества вроде песка или глины нерастворяются, потому воду можно отфильтровать.

Классификация способности по веществам:

  1. Хорошо растворимые (спирт, сахар, соль (она же натрий), большинство щелочей и нитратов металлов).
  2. Мало растворимые (гипс, бертолетова соль, бензол, метан, азот и кислород).
  3. Практически нерастворимые (драгоценные и полудрагоценные металлы, керосин, ряд масел, инертные газы, сульфид меди).

Отдельная группа — жирорастворимые и водорастворимыевитамины. Они необходимы для здоровья человека, а за счет собственнойспособности растворяться, накапливаются в организме из-за содержания воды. Кводорастворимому типу относятся витамины С, В1, В2, В3 (РР), В6, В12, фолиеваякислота, пантотеновая кислота и биотин.

Таким образом, вода как растворитель весьма уникальна.Список сложно и нерастворимых веществ достаточно короткий, чтобы говорить обуниверсальности воды в качестве растворителя.

Источник: https://VodaVoMne.ru/svojstva-vody/rastvorenie-v-vode

Растворимость меди в воде и кислотах

В основе химических свойств большинства элементов лежит их способность к растворению в водной среде и кислотах. Изучение характеристики меди связано с малоактивным действием в обычных условиях.

Особенностью её химических процессов является образование соединений с аммиаком, ртутью, азотной и серной кислотами. Низкая растворимость меди в воде не способна вызвать коррозионные процессы.

Ей присущи особые химические свойства, позволяющие использовать соединение в разных отраслях промышленности.

Описание элемента

Медь считается старейшим из металлов, который научились добывать люди ещё до нашей эры. Это вещество получают из природных источников в виде руды. Медью называют элемент химической таблицы с латинским наименованием cuprum, порядковый номер которого равен 29. В периодической системе он расположен в четвёртом периоде и относится к первой группе.

Природное вещество является розово-красным тяжёлым металлом с мягкой и ковкой структурой. Температура его кипения и плавления – более 1000 °С. Считается хорошим проводником.

Химическое строение и свойства

Если изучить электронную формулу медного атома, то можно обнаружить, что у него имеется 4 уровня. На валентной 4s-орбитали находится всего один электрон. Во время химических реакций от атома может отщепляться от 1 до 3 отрицательно заряжённых частиц, тогда получаются соединения меди со степенью окисления +3, +2, +1. Наибольшей устойчивостью обладают её двухвалентные производные.

В химических реакциях она выступает в качестве малоактивного металла. В обычных условиях растворимость меди в воде отсутствует. В сухом воздухе не наблюдается коррозия, зато при нагревании поверхность металла покрывается чёрным налётом из оксида двухвалентного.

Химическая устойчивость меди проявляется при действии безводных газов, углерода, ряда органических соединений, фенольных смол и спиртов. Для неё характерны реакции комплексообразования с выделением окрашенных соединений.

Медь обладает небольшим сходством с металлами щелочной группы, связанным с формированием производных одновалентного ряда.

Что такое растворимость?

Это процесс образования однородных систем в виде растворов при взаимодействии одного соединения с другими веществами. Их составляющими являются отдельные молекулы, атомы, ионы и другие частицы. Степень растворимости определяется по концентрации вещества, которое растворили при получении насыщенного раствора.

Единицей измерения чаще всего являются проценты, объёмные или весовые доли. Растворимость меди в воде, как и других соединений твёрдого вида, подчиняется лишь изменениям температурных условий. Эту зависимость выражают с помощью кривых. Если показатель очень маленький, то вещество считается нерастворимым.

Металл проявляет коррозионную стойкость под действием морской воды. Это доказывает его инертность в обычных условиях. Растворимость меди в воде (пресной) практически не наблюдается. Зато во влажной среде и под действием углекислого газа на металлической поверхности происходит образование плёнки зелёного цвета, которая является основным карбонатом:

Cu + Cu + O2 + H2O + CO2 → Cu(OH)2 · CuCO2.

Если рассматривать её одновалентные соединения в виде соли, то наблюдается их незначительное растворение. Такие вещества подвержены быстрому окислению. В результате получаются соединения меди двухвалентные. Эти соли обладают хорошей растворимостью в водной среде. Происходит их полная диссоциация на ионы.

Растворимость в кислотах

Обычные условия протекания реакций меди со слабыми или разбавленными кислотами не способствуют их взаимодействию. Не наблюдается химический процесс металла со щелочами. Растворимость меди в кислотах возможна, если они являются сильными окислителями. Только в этом случае протекает взаимодействие.

Растворимость меди в азотной кислоте

Такая реакция возможна ввиду того, что происходит процесс окисления металла сильным реагентом. Кислота азотная в разбавленном и концентрированном виде проявляет окислительные свойства с растворением меди.

В первом варианте во время реакции получается меди нитрат и азота двухвалентный оксид в соотношении 75 % к 25 %. Процесс с разбавленной кислотой азотной можно описать следующим уравнением:

8HNO3 + 3Cu → 3Cu(NO3)2 + NO + NO + 4H2O.

Во втором случае получается меди нитрат и азота оксиды двухвалентные и четырёхвалентные, соотношение которых 1 к 1. В этом процессе участвует 1 моль металла и 3 моля кислоты азотной концентрированной. При растворении меди происходит сильный разогрев раствора, в результате чего наблюдается термическое разложение окислителя и выделение дополнительного объёма азотных оксидов:

4HNO3 + Cu → Cu(NO3)2 + NO2 + NO2 + 2H2O.

Реакцию используют в малотоннажном производстве, связанном с переработкой лома или удалением покрытия с отходов. Однако такой способ растворения меди имеет ряд недостатков, связанных с выделением большого количества азотных оксидов. Для их улавливания или нейтрализации необходимо специальное оборудование. Процессы эти весьма затратные.

Растворение меди считается завершённым, когда происходит полное прекращение выработки летучих азотистых оксидов. Температура реакции колеблется от 60 до 70 °C. Следующим этапом является спуск раствора из химического реактора. На его дне остаются небольшие куски металла, который не прореагировал. К полученной жидкости добавляют воду и проводят фильтрацию.

Растворимость в кислоте серной

В обычном состоянии такая реакция не протекает. Фактором, определяющим растворение меди в серной кислоте, является её сильная концентрация. Разбавленная среда не может окислить металл. Растворение меди в серной кислоте концентрированной протекает с выделением сульфата.

Процесс выражается следующим уравнением:

Cu + H2SO4 + H2SO4 → CuSO4 + 2H2O + SO2.

Свойства сульфата меди

Соль двухосновную ещё называют сернокислой, обозначают её так: CuSO4. Она представляет собой вещество без характерного запаха, не проявляющее летучесть. В безводной форме соль не имеет цвета, она непрозрачная, обладающая высокой гигроскопичностью. У меди (сульфат) растворимость хорошая. Молекулы воды, присоединяясь к соли, могут образовывать кристаллогидратные соединения. Примером служит купорос медный, который является пентагидратом голубого цвета. Его формула: CuSO4·5H2O.

Кристаллогидратам присуща прозрачная структура синеватого оттенка, они проявляют горьковатый, металлический привкус. Молекулы их способны со временем терять связанную воду. В природе встречаются в виде минералов, к которым относят халькантит и бутит.

Подвержен воздействию меди сульфат. Растворимость является реакцией экзотермической. В процессе гидратации соли выделяется значительное количество тепла.

Растворимость меди в железе

В результате этого процесса образуются псевдосплавы из Fe и Cu. Для металлического железа и меди возможна ограниченная взаимная растворимость. Максимальные её значения наблюдаются при температурном показателе 1099,85 °C. Степень растворимости меди в твёрдой форме железа равняется 8,5 %. Это небольшие показатели. Растворение металлического железа в твёрдой форме меди составляет около 4,2 %.

Снижение температуры до комнатных значений делает взаимные процессы незначительными. При расплавлении металлической меди, она способна хорошо смачивать железо в твёрдой форме. При получении псевдосплавов Fe и Cu используют особые заготовки. Их создают путём прессования или печения железного порошка, находящегося в чистой или легированной форме. Такие заготовки пропитывают жидкой медью, образуя псевдосплавы.

Растворение в аммиаке

Процесс часто протекает при пропускании NH3 в газообразной форме над раскалённым металлом. Результатом является растворение меди в аммиаке, выделение Cu3N. Это соединение называют нитридом одновалентным.

Соли её подвергаются воздействию раствора аммиачного. Прибавление такого реактива к медному хлориду приводит к выпадению осадка в виде гидроксида:

CuCl2 + NH3 + NH3 + 2H2O → 2NH4Cl + Cu(OH)2↓.

Аммиачный избыток способствует формированию соединения комплексного типа, имеющего окраску тёмно-синюю:

Cu(OH)2↓+ 4NH3 → [Cu(NH3)4] (OH)2.

Этот процесс используют для определения ионов двухвалентной меди.

Растворимость в чугуне

В структуре ковкого перлитного чугуна помимо основных компонентов присутствует дополнительный элемент в виде обычной меди. Именно она повышает графитизацию углеродных атомов, способствует увеличению жидкотекучести, прочности и твёрдости сплавов.

Металл положительно влияет на уровень перлита в конечном продукте. Растворимость меди в чугуне используют для проведения легирования исходного состава. Основной целью такого процесса является получение ковкого сплава.

У него будут повышенные механические и коррозионные свойства, но уменьшено охрупчивание.

Если содержание меди в чугуне составляет около 1 %, то показатель прочности при проведении растяжения приравнивается к 40 %, а текучести увеличивается до 50 %. Это существенно изменяет характеристики сплава.

Повышение количества металла, легирующего до 2 %, приводит к изменению прочности до значения 65 %, а показатель текучести становится равен 70 %. При большем содержании меди в составе чугуна труднее образуется шаровидный графит. Введение в структуру легирующего элемента не изменяет технологию формирования вязкого и мягкого сплава.

Время, которое отводится для отжига, совпадает с продолжительностью такой реакции при производстве чугуна без примеси меди. Оно составляет около 10 часов.

Использование меди для изготовления чугуна с высокой концентрацией кремния не способно полностью устранить так называемое ожелезнение смеси во время отжига. В результате получают продукт с низкой упругостью.

Растворимость в ртути

При смешивании ртути с металлами других элементов получаются амальгамы. Этот процесс может проходить при комнатной температуре, ведь в таких условиях Pb представляет собой жидкость. Растворимость меди в ртути проходит только во время нагревания. Металл необходимо предварительно измельчить.

При смачивании жидкой ртутью твёрдой меди происходит взаимное проникновение одного вещества в другое или процесс диффундирования. Значение растворимости выражается в процентах и составляет 7,4*10-3. В процессе реакции получается твёрдая простая амальгама, похожая на цемент. Если её немного нагреть, то она размягчается.

В результате такую смесь используют для починки изделий из фарфора. Существуют ещё и сложные амальгамы с оптимальным содержанием в ней металлов. Например, в стоматологическом сплаве присутствуют элементы серебра, олова, меди и цинка. Их количество в процентах относится как 65: 27: 6:2. Амальгам с таким составом называется серебряным.

Каждый компонент сплава выполняет определённую функцию, которая позволяет получить пломбу высокого качества.

Другим примером служит сплав амальгамный, в котором наблюдается высокое содержание меди. Его ещё называют медным сплавом. В составе амальгама присутствует от 10 до 30 % Cu. Высокое содержание меди препятствует взаимодействию олова со ртутью, что не позволяет образовываться очень слабой и коррозирующей фазе сплава. Кроме того, уменьшение количества в пломбе серебра приводит к удешевлению.

Для приготовления амальгамы желательно использовать инертную атмосферу или защитную жидкость, которая образует плёнку. Металлы, входящие в состав сплава способны быстро окисляться воздухом. Процесс нагревания амальгамы купрума в присутствие водорода приводит к отгонке ртути, что позволяет отделить элементарную медь. Как видите, эта тема несложна для изучения.

Теперь вы знаете, как медь взаимодействует не только с водой, но и с кислотами и другими элементами.

Источник: https://FB.ru/article/238897/rastvorimost-medi-v-vode-i-kislotah

Соляная кислота — одна из самых сильных кислот, чрезвычайно востребованный реактив

  • Соляная кислота — неорганическое вещество, одноосновная кислота, одна из самых сильных кислот. Используются также другие названия: хлористый водород, кислота хлороводородная, кислота хлористоводородная.Кислота в чистом виде представляет собой жидкость без цвета и запаха. Техническая кислота обычно содержит примеси, которые придают ей слегка желтоватый оттенок. Соляную кислоту часто называют «дымящей», так как она выделяет пары хлороводорода, вступающие в реакцию с влагой воздуха и образующие кислотный туман.  Очень хорошо растворяется в воде. При комнатной температуре максимально возможное по массе содержание хлороводорода —38%. Кислота концентрации большей 24% считается концентрированной.Хлористоводородная кислота активно вступает в реакции с металлами, оксидами, гидроксидами, образуя соли — хлориды. HCl взаимодействует с солями более слабых кислот; с сильными окислителями и аммиаком.Для определения соляной кислоты или хлоридов используют реакцию с нитратом серебра AgNO3, в результате которой выпадает белый творожистый осадок.

    Техника безопасности

    Вещество очень едкое, разъедает кожу, органические материалы, металлы и их окислы. На воздухе выделяет пары хлороводорода, которые вызывают удушье, ожоги кожи, слизистой глаз и носа, повреждают органы дыхания, разрушают зубы. Соляная кислота относится к веществам 2 степени опасности (высокоопасным), ПДК реактива в воздухе составляет 0,005 мг/л. Работать с хлористым водородом можно только в фильтрующих противогазах и защитной одежде, включая резиновые перчатки, фартук, спецобувь.При разливе кислоты ее смывают большим количеством воды или нейтрализуют щелочным растворами. Пострадавших от кислоты следует вынести из опасной зоны, промыть кожу и глаза водой или содовым раствором, вызвать врача.Перевозить и хранить хим реактив допускается в стеклянной, пластиковой таре, а также в металлической таре, покрытой изнутри резиновым слоем. Тара должна герметично закрываться.

    Получение

    В промышленных масштабах соляную кислоту получают из газообразного хлороводорода (HCl). Сам хлороводород производится двумя основными способами:— экзотермической реакцией хлора и водорода — таким образом получают реактив высокой чистоты, например, для пищевой промышленности и фармацевтики;— из сопутствующих промышленных газов — кислота на основе такого HCl называется абгазной.

Это любопытно

Именно соляной кислоте природа «поручила» процесс расщепления пищи в организме. Концентрация кислоты в желудке составляет всего 0,4%, но этого оказывается достаточно, чтобы за неделю переварить бритвенное лезвие!

Кислота вырабатывается клетками самого желудка, который защищен от этой агрессивной субстанции слизистой оболочкой. Тем не менее, его поверхность обновляется ежедневно, чтобы восстановить поврежденные участки. Кроме участия в процессе переваривания пищи, кислота выполняет еще и защитную функцию, убивая болезнетворные микроорганизмы, попадающие в организм через желудок.

С какими веществами реагирует золото, какие у него свойства?

Что реагирует на золото и какие вещества помогут распознать металл в обычных условиях или в лаборатории? Это сложный вопрос, поскольку по своей сути это элемент периодической таблицы Менделеева, который отличается инертностью.

статьи

  • Свойства металла
  • Физические показатели
  • Сферы применения

Растворение золота в царской водке

Инертность — способность вещества не реагировать на кислоты, щелочи и не окисляться при контакте с воздухом и водой. В таблице металл обозначается символом Au, а «золото» с латыни переводится, как «восход солнца».

Золото и платина как раз стали называться благородными металлами, когда выяснилась их способность не реагировать на внешние факторы и химические реагенты.

Но химия, как и любая другая наука, не стоит на месте, и удалось обнаружить несколько веществ, которые вступают с Au в реакцию.

Свойства металла

Химические свойства золота свидетельствуют о том, что этот металл все же может реагировать на некоторые вещества.

Так с чем же взаимодействует Au и при каких условиях?

  • Ртуть может образовывать с золотом особое соединение — амальгаму. Это сплав двух металлов, молекулы ртути притягивают к себе молекулы Au, в результате чего образуется соединение.
  • Золото растворяется в царской водке, об этом известно довольно давно, но смесь высокой концентрации азотной и соляной кислот не имеет аналогов. Химики используют ее до сих пор, они не нашли царской водке достойной замены и применяют ее при проведении аффинажа.
  • Реакция селеновой кислоты и Au начинается только тогда, когда концентрированную кислоту разогревают до определенной температуры.
  • Еще благородный металл вступает в реакцию с йодистым калием. Но в некоторых случаях для идентификации используют обычный раствор йода на спирту, который присутствует в аптечке.
  • Жидкий бром и вода с цианидами — вот еще два химических реагента, которые способны вступить в реакцию с Au.

Способности ртутит притягивать молекулы Au известны давно. В старину это свойство металла использовали для добычи золота. Были созданы специальные шлюзы, поверхность которых покрывалась слоем ртути, притягивавшей Au и позволявшей увеличить уровень его добычи. Минусом такого способа считалась токсичность, человек, который имел постоянный контакт со ртутью, жертвовал своим здоровьем, добывая золото.

Амальгама — состояние обратимое, чтобы Au вновь приобрел свой первоначальный вид, смесь необходимо подогреть примерно до 800 градусов.

Задолго до того как Дмитрию Менделееву приснилась его периодическая таблица, алхимикам была известна способность золота растворяться в смеси двух кислот. Азотную и соляную кислоты смешивали и использовали для проведения различных опытов. Ученые того времени шифровали свои записи, по этой причине не расписывали реакцию, а рисовали ее.

Алхимики изображали льва, который поглощал солнце, животное стояло на задних лапах и поедало желтый круг. Золото ассоциировалось с солнцем за свой цвет, а вот львом была как раз смесь двух кислот. Царская водка, по сути, — универсальный растворитель, которому под силу разложить на молекулы все благородные металлы. Смесь кислот используют и сегодня, при проведении аффинажа или других опытов. Формула царской водки: HNO3+3 HCl.

Реакция золота на йод

Такая смесь способна растворить даже платину и большинство существующих металлов. Только серебро не слишком охотно растворяется в смеси двух кислот. Но с течением времени сила растворителя уменьшается: чем больше реагент контактирует с воздухом, тем слабее он становится.

Реакция с селеновой кислотой проходит при определенных условиях. Чтобы растворить золото, необходимо использовать концентрированную кислоту, нагреть ее до определенной температуры и при этом обеспечить приток кислорода. Если кислорода будет недостаточно, то реакция будет идти медленно.

Йодистый калий используют довольно редко в химии, подобным образом Au идентифицировать не любят. Зато в обычной жизни украшения, изготовленные из золота, часто проверяют на подлинность, используя раствор йода на спирту.

Если говорить о применении в промышленных масштабах, то способность цианидов взаимодействовать с желтым металлом нашла свое место в этой отрасли. Цианирование — один из методов очистки золота, он помогает отделить Au от частиц породы и примесей.

Несмотря на инертность, при работе с Au стоит учитывать один факт. Если металл с другими реагентами нагреть, то реакция пойдет быстрее. Но золото очень быстро возвращается в первичное состояние, что нужно иметь в виду.

Список веществ, которые способны вступать в реакцию с благородным металлом, на этом исчерпан. Золото не растворяется в воде, в спирте и других веществах. Реагенты не способны нанести металлу вред, разложить его на молекулы, но не стоит забывать, что чистое золото встречается только в слитках. Даже в природе этот металл имеет примеси, которые значительно снижают его инертность.

Оценив все свойства Au, ученые пришли к выводу, что элемент на нашей планете появился из космоса. Золото попало на Землю с частицами космических тел и метеоритов. На нашей планете не существовало условий, благоприятных для его формирования.

Химические свойства элемента под номером 79 немногочисленны, но они все же помогают химикам проводить опыты и исследования, делать очередные открытия. Но не только химия помогает идентифицировать благородный металл, есть и другая наука, которая в этом неплохо преуспела.

Физические показатели

Наряду с химическими, у золота есть и физические свойства, к которым относят:

  1. Невысокую твердость, по шкале Мооса от 2,5 до 3 единиц.
  2. Пластичность и ковкость.
  3. Желтый цвет.

Au не обладает высокой твердостью. В то время как алмазу присваивают 9 баллов по шкале Мооса, этот элемент удостоился всего 3. Чтобы повысить твердость Au, его сплавляют с другими металлами, в результате чего возникает лигатура, используемая для создания украшений. Драгоценности из чистого золота практически не встречаются, они тяжелые и легко деформируются при носке.

Для того чтобы идентифицировать металл, достаточно попробовать его на зуб. Можно укусить изделие, если оно легко поддается деформации и меняет форму, на поверхности остаются следы от зубов, то можно не сомневаться в его подлинности.

Au отличается ковкостью и пластичностью. Можно разрезать слиток ножом, не прилагая особых усилий, а также превратить кусок благородного металла в тонкий лист. Благодаря этому создают сусальное золото, которое используют в качестве декоративного материала: им покрывают купола церквей, защищая их от воздействия факторов окружающей среды.

Золото — единственный металл, который обладает желтым цветом. Этот оттенок повлиял на характеристики элемента, его ассоциировали с силой солнца. Металлу присваивали различные свойства, теплый оттенок свидетельствовал и о таинственном происхождении элемента.

Испокон веков Au ассоциируется у людей с богатством, высоким положением в обществе. В старину обычным людям не дозволялось носить золотые украшения, поскольку этой прерогативы были достойны только представители высшего общества.

Сферы применения

Благодаря своим свойствам, красоте и инертности Au нашел применение в различных отраслях промышленности и не только.

Его используют сегодня:

  • в ювелирной промышленности;
  • в косметологии и медицине;
  • для создания электроники;
  • в космической отрасли.

Естественно, что наибольшая часть благородного металла идет для создания произведений ювелирной промышленности. Из него делают украшения, инкрустируя их драгоценными и полудрагоценными камнями. Кроме того, золото в слитках используется как материал для инвестиций, в них вкладывают деньги, и это неизменно приносит прибыль.

Большое количество средств по уходу за кожей содержит в своем составе Au. Этот элемент помогает справиться с признаками старения, в пример можно привести нити из золота, которые вживляют в кожу и которые оказывают омолаживающее действие на организм. Еще металл используют при лечении заболеваний суставов (артритов), а также с его помощью лечат аутоиммунные и онкологические заболевания. Специальную сыворотку, в составе которой есть Au, вводят в организм больного.

Содержат Au в небольшом количестве контакты материнских плат компьютеров и мобильных телефонов, их покрывают золотом.

Если говорить о космической промышленности, то тут элемент используют везде, где необходимы его антикоррозийные свойства. Золотом покрывают стекла шаттлов и шлемов космонавтов. А также некоторые части контактов при изготовлении космических кораблей.

Золото — самый популярный металл на планете, его добыча ведется так давно, что сложно определить дату, когда именно человечество познакомилось с Au. Но точно можно сказать, что произошло это еще задолго до нашей эры. С годами популярность Au только растет, цена на металл поднимается, размеры добычи падают, но любовь человечества к золоту не снижается. Ему присваивают магические свойства, наделяют энергией солнца и называют то металлом Бога, то дьявола.

Причиной «особого отношения» к золоту является не только его красота, но и свойства, которые делают металл благородным и столь ценным для человека.

Источник: https://DedPodaril.com/zoloto/imform/chto-reagiruet-na-zoloto.html

В чем растворяется золото: обзор химикатов, применение кислот, какой способ подходит для домашних условий

Добрый день, читатели! В этой статье вы найдете информацию об одном из самых сложных процессов в химии — растворении золота. С помощью моих советов вы сможете воссоздать тяжелейшую реакцию самостоятельно и без особых навыков!

Золото — довольно малоактивный металл. В природе чаще всего оно встречается в качестве соединений. Когда неопытный химик задается целью получить чистый драгметалл, сам собой возникает вопрос, в чем растворяется золото. Без растворения выделить его невозможно. Но найти вещество, которое вступит в сложную реакцию, — непростая задача, не зря ведь золото называют благородным металлом.

Чем можно растворить золото

Долгие годы химики использовали лишь опасный метод, в котором при предельно высокой температуре золото растворяется в реакции с фтором. Но в современном мире применяют новые, более безопасные способы.

Амальгама

Амальгамой называют сплавы ртути в жидком или твердом состоянии, его используют как промышленный метод аффинажа. Процесс амальгамации золота заключается в особенности ртути образовывать соединения нескольких металлов.

Перед амальгамацией следует поместить самородок в раствор азотной кислоты в соотношении с водой 10:1. Золото должно находиться в растворе до полного завершения видимой реакции, после чего его необходимо промыть.

Для амальгамации драгметалл и ртуть берутся в одинаковой пропорции. В неметаллический лоток помещают оба вещества и вращают его. Шарик ртути растворяется в молекулах самородка. Ненужный осадок выливается из лотка.

Насыщенную золотом амальгаму необходимо осторожно промыть под проточной водой.

Излишки ртути из амальгамы удаляются путем продавливания шарика через мокрую замшу. Оставшееся на поверхности соединение нагревается до полного испарения ртути.

Царская водка

Большинство кислот оказывают страшное воздействие на органику. Но даже в них не растворяется золото. Знаменитое изобретение Ломоносова — царская водка — единственная кислота, способная привести в действие реакцию.

Царской водкой называют смесь соляной и азотной кислоты в особом соотношении (1:3). Ее свойства многократно усилены благодаря высокой концентрации компонентов.

Драгметалл растворяется в царской водке благодаря тому, что азотная кислота окисляет соляную. Образуется особое соединение — атомарный хлор, который мгновенно реагирует с металлом, создавая сложную золотохлористоводородную кислоту. Часть драгметалла кристаллизуется, а другая часть — растворяется.

Стоит отметить, что протекание химической реакции зависит от того, в какой кислоте растворяется металл и какова ее концентрация.

Хлорка

Хлорка, широко применяемая в быту, — это водный раствор газообразного хлора, относящегося к группе галогенов. Для аффинажа хлорка, приобретенная в обычном магазине, не подойдет, т.к. ее концентрация слишком низка.

Концентрированный раствор хлора оказывает следующее действие: хлор распадается на соляную и хлорноватистую кислоты, вторая, в свою очередь, под действием солнечных лучей разлагается на соляную кислоту и кислород. Как и в реакции с царской водкой, выделяется атомарное вещество, которое с легкостью окисляет самородок.

Йод сам по себе — не растворимое в воде вещество. Растворяется его соединение с йодидом калия. Это лекарственный препарат под названием Люголь.

Золото растворяется в Люголе из-за того, что йод создает непрочные соединения — анионы. Но реакция проходит намного медленнее, нежели с кислотами, да и растворяется лишь верхний слой металла.

Какой способ подходит для домашних условий

Аффинаж золота (получение чистого металла) можно произвести и дома. Самый безопасный метод растворения — с помощью электрического тока.

Электролиз

Большая ванна наполняется соляной кислотой и хлорным золотом — реактивом, используемым для апробирования изделий и определения пробы. Его можно выделить при помощи царской водки, золота и аммиака или приобрести в готовом виде в магазинах ювелирного оборудования.

Реакция, называемая электрохимической, протекает за счет напряжения, поданного в ванну. В результате металл высокой пробы без примесей оседает на бортиках, а на дне ванны осадком выпадают оставшиеся компоненты.

Пошаговая инструкция по растворению золота

Растворение металла — трудоемкий процесс. Действенный способ — использование цинка. Он применяется химиками для выделения чистейшего металла высокой пробы.

Существует множество видео, на которых наглядно показана бурная реакция с цинком.

Необходимые материалы и инструменты

Требуются следующие инструменты:

  • емкость для нагрева;
  • большой пинцет;
  • плита;
  • огнеупорная колба;
  • колпак с щелью;
  • аппарат для плавления металлов.

Источник: https://zhazhdazolota.ru/dobycha/v-chem-rastvoryaetsya-aurum

Понравилась статья? Поделиться с друзьями:
Металлы и их обработка
-- Сайдб лев (липк) -->
Как удалить ржавчину с ключа

Закрыть
Для любых предложений по сайту: [email protected]