Какой газ используют при сварке?
О возможности полуавтоматической сварки материалов в среде углекислого газа заговорили в середине ХХ столетия. Разработали данную методику Новожилов Н.М. и Любавский К.В. – советские исследователи. Данный способ сварки из-за дешевизны углекислого газа, благодаря высокой степени производительности стал достаточно востребованным в строительной, производственной индустрии, и, конечно же, в быту.
Суть технологии газосварки
Согласно данной методике углекислый газ, обеспечивающий защиту на соединяемом участке, под влиянием высокой температуры дуги делится на О2, угарный газ. В результате поток образовавшейся газовой смеси защищает зону сваривания материала от негативного воздействия воздуха внешней среды, взаимодействует с углеродом, железом.
Для предотвращения окисления СО2 в прут для сварки газом вводится марганец, кремний, которые являются химически активнее больше железа, они окисляются первыми. Поэтому пока Mn, Si будут присутствовать на участке соединения металлических изделий, углерод, железо окисляться не будут.
Для получения высококачественных сварных швов при сваривании углеродистых сталей, пропорция марганец/кремний берется 1/2. Образующиеся оксиды марганца, кремния при выполнении работ не растворяются в сварной ванне, они формируют легкоплавкое соединение после реакции между собой. Данное соединение легко выводится из металла, находящегося в жидком состоянии.
Особенности сварочных работ в углекислотной среде
Полуавтоматическая сварка в среде углекислого газа выполняется постоянным током, обладающим обратной полярностью, так как ток прямой полярности негативно влияет на стабильность дуги (сварной шов будет иметь дефекты).
Также сварку можно производить на переменном токе, но тогда в цепи обязательно нужно использовать осциллятор.
Используемые газы для газосварки
Типов сварки существует несколько вариантов. Они отличаются между собой технологией образования сварочной ванны, имеющей высокую температуру, предназначение которой – соединение, резка металлов, их сплавов. Это может выполняться газовым пламенем, ультразвуком или электрической дугой. Принцип соединения металлов основан на расплавлении краев отдельных металлических конструкций для дальнейшего их соединения вместе, в результате которого получается сварочный шов.
Зависимо от газа, используемого для сварочных работ, показатель температуры будет отличаться. К примеру, при взаимодействии с карбидом кальция Н2О, осуществляется выделение ацетилена. В процессе реакции данного элемента с кислородом температура пламени может достигать больше 3000ºС.
Сварочные газы – это все бутаны, пропаны, бензолы, МАФ, керосины и т. д. При использовании для сварки любых газов обязательно наличие кислорода – это катализатор горения. О2 должен быть чистый и высококачественный. От этого будет зависеть максимальный температурный показатель.
Газовый состав
В газовом составе обязательно присутствие чистого кислорода, который предоставляет возможность получать максимальную температуру горения, важные показатели пламени. От качества этого компонента будет зависеть полнота сгорания горючих компонентов, а от его количества – окислительные, восстановительные характеристики, получаемые пламенем.
К условиям хранения газов предъявляются особые требования. Применение специальных емкостей (баллонов) обязательно, так как:
- большинство сварочных газов являются токсичными;
- технический кислород – это мощнейший катализатор.
Если использовать атмосферный кислород, сварные швы не получатся ровными. При этом после расплавления и последующего соединения металл потеряет свои первоначальные качества. Применение стандартного кислорода, который содержится в атмосфере недостаточно эффективно. В нем присутствуют разнообразные примеси, которые существенно снижают скорость сгорания компонентов, а это соответственно сказывается на температуре пламени горелки.
Газы для сварки
Важно! Необходимо соблюдать пропорции газовых смесей при использовании любого типа газа. Сам же выбор будет зависеть от свариваемого материала. Например, для соединения образцов из стали газовый состав должен содержать 18% углекислого газа, а для соединения материалов из нержавеющей стали смесь должна состоять на 98% из аргона.
Механизированная сварка в среде защитных газов предполагает использование активных, инертных газов. Они в металлах не растворяются, не являются ядовитыми.
Разновидности газов:
- N2 – азот, бесцветный газ, не имеющий запаха. Используется для соединения медных материалов. Выделяется четыре типа азота с различным содержанием вещества.
- He – гелий, газ бесцветный, не имеющий запаха, легче воздуха. Выделяется два типа гелия: технический, высокочастотный. Из-за высокой себестоимости данный газ менее востребован на рынке. Гелий предназначен для соединения образцов из алюминия, чистых металлов, стали.
- Ar – аргон, газ бесцветный, не имеющий запаха, весит в 1,5 раза больше воздуха, не горит. Выделяют два типа данного газа: 1-го сорта (для образцов из алюминия, стали), высшего сорта (для полуавтоматической сварки в среде защитных газов образцов из редких металлических сплавов).
Активные газы выполняют защиту от воздуха участка сваривания. Они вступают в реакцию, растворяются в металлах.
- Углекислый газ (СО2), отличается повышенными окислительными характеристиками, обладает специфическим запахом. Его масса в 1,5 раза больше воздуха, он растворяется в Н2О. Выделяю три типа данного газа, которые применяются для сваривания чугунных материалов, низко, среднеуглеродистых металлических сплавов, коррозийных, низколегированных стальных образцов. Важно запомнить! Сварка в защитных газах не предусматривает применения двуокиси углерода.
- Кислород О2 – довольно мощный катализатор, бесцветный, без вкуса, запаха, не горит, но поддерживает горение. Используется в составе с инертными компонентами.
Наиболее популярные газовые смеси, которые повышают качество шва, улучшают сам процесс соединения:
- углекислый газ «плюс» кислород
- аргон «плюс» гелий
- углекислый газ «плюс» аргон
- углекислый газ «плюс» кислород «плюс» аргон
- кислород «плюс» аргон
Достоинства, недостатки газосварки
Сварка в защитных газах характеризуется плавлением материала. Сам процесс основывается на соединении отдельных элементов предварительно нагреваемого металла до расплавления. Для этого берется высокотемпературное пламя горелки, которое формируется в процессе сжигания газового состава с кислородом. Зазор между образцами заполняется предварительно расплавленной металлической проволоки.
- довольно простая технология сварки;
- нет необходимости в приобретении дорогостоящего, технически сложного оборудования;
- нет необходимости в специальном источнике питания;
- сварщик имеет возможность регулировки скорости нагревания, охлаждения соединяемого сваркой материала, меняя мощность, положение пламени горелки относительно свариваемой точки.
Источник: https://electrod.biz/tehnologii/gaz-dlja-svarki.html
Газовая сварка: какие газы, проволока и флюсы для нее используются?
Газовой сваркой называют процесс соединения металлов при нагреве свариваемых кромок высокотемпературным пламенем, образующимся при сгорании смеси горючего газа и кислорода. Кислород в данном случае выполняет функцию катализатора.
Кислород
При обычной температуре и давлении газ не имеет цвета и запаха. Для сварочных работ востребован технический кислород, добытый из воздуха и обработанный в воздухоразделительных установках, трех сортов:
- высшего, чистота по объему – 99,5%;
- 1-го – 99,2%;
- 2-го – 98, 5% .
Остаток составляют аргон и азот.
При смешении горючих газов или паров горючих жидкостей с кислородом в определенных пропорциях начинается интенсивное горение с выделением большого количества тепла.
Для хранения технического кислорода используют специальные окрашенные в голубой цвет баллоны объемом 40 дм3 (40 л). Надпись «Кислород» сделана черным. Масса такого баллона без колпака и башмака составляет 60 кг.
Внимание! При использовании кислородных баллонов необходимо соблюдать предельную осторожность из-за высокого давления внутри них. Есть еще одна опасность – высокая активность газа при контакте с органическими веществами (маслами или жирами). Чистый кислород – очень сильный окислитель, который при взаимодействии с углеводородами вызывает возгорание с большим выделением тепла, что провоцирует взрыв.
Сколько кислорода содержится в баллоне 40 л?
Номинальное давление газа в баллоне при +20°C – 14,7 МПа (по ГОСТу 5583). В таких условиях в него вмещается 6,3 м3 кислорода, по массе – 8,3 кг.
Ацетилен
Этот газ является первым и основным представителем алкинов гомологического ряда. По международной номенклатуре химических соединений ИЮПАК его название – этин. Формула – C2H2. Ацетилен – бесцветный, горючий, в смеси с воздухом взрывоопасен. Газ, благодаря тройной связи в молекуле, легко участвует в реакциях присоединения. Во время его сгорания выделяется значительное количество тепла, что используется в ацетиленовой горелке.
Ацетилен нельзя применять в чистом виде, поскольку в свободной форме он очень взрывоопасен. Для заправки в баллон его разбивают на мелкие частицы путем растворения в ацетоне. Этот способ позволяет снизить взрывоопасность ацетилена и заправить в баллон достаточно большое количество газа. Используют баллоны, окрашенные в белый цвет, надпись красная. При работе необходимо сохранять вертикальное положение баллона и оставлять остаточное давление, что снизит потери.
Сколько ацетилена содержится в баллоне 40 л?
В баллон закачивается технический ацетилен, соответствующий ГОСТу 5457, в него помещается:
- по объему – 5,3 м3;
- по массе – 5 кг газа.
Получение ацетилена из карбида кальция
Распространенный способ получения ацетилена для сварки – из воды и карбида кальция в ацетиленовых генераторах во время сварочного процесса.
Карбид кальция представляет собой твердый кускообразный материал, имеющий выраженный чесночный запах. Характерная особенность этого материала – интенсивное поглощение воды. Технический карбид кальция содержит, помимо CaC2, примеси: оксид кальция, кокс и другие.
Определение!
Количество литров газообразного ацетилена при давлении 760 мм рт. ст. и +20°C, производимого из 1 кг карбида в результате затворения водой, называют литражом.
Можно ли определить качество карбида кальция по цвету?
Чем чище карбид кальция, тем больше ацетилена получают при разложении 1 кг продукта (тем выше его литраж). При содержании чистого CaC2 в количестве 60-75% разлом материала имеет серый цвет, который при возрастании процентного содержания CaC2 переходит в фиолетовый. Высокопроцентный карбид кальция (от 80% CaC2) может иметь цвет от светло-коричневого до голубовато-черного.
Виды генераторов для получения ацетилена из карбида кальция
ГОСТ 5190 определяет несколько классификационных признаков для ацетиленовых генераторов:
- по давлению получаемого газа: низкого – до 0,01 МПа, среднего – 0,07-0,15 МПа, высокого – более 0,15 МПа;
- по производительности: 0,3-160 м3;
- по способу применения: стационарные и передвижные;
- по принципу действия: «карбид в воду», «вода на карбид» по «сухому» и «мокрому» процессам.
Рассмотрим основные виды ацетиленовых генераторов.
«Карбид в воду»
Это наиболее популярное оборудование. Принцип работы промышленного варианта:
- карбид периодически из бункера подается отдельными порциями в газообразующую камеру через питатель, в камере газообразования находится вода;
- подача карбида осуществляется периодически при падении давления в бункере с водой ниже установленного уровня;
- в газообразующей камере в результате реакции карбида и воды образуется ацетилен, подаваемый в ацетиленовый шланг;
- осадок – гашеная известь – удаляется через выпускной клапан.
В домашних мастерских, на небольших производствах и стройплощадках востребован мобильный ацетиленовый генератор типа АСП-10 производительностью 1,25 м3/час. Его разовая – 3,5 кг карбида кальция оптимальной фракции 25-80 мм. Без перезарядки он может работать 0,8 часа.
Агрегат состоит из корпуса с крышкой и мембраной, корзины для карбида, предохранительного клапана и жидкостного затвора, сливных штуцеров, поддона, манометра. Вверху корпуса находится газообразователь, в котором и происходит разложение CaC2 с генерацией ацетилена.
Ацетилен накапливается в газосборнике.
Преимуществами подобных генераторов являются: наиболее полное разложение карбида кальция (до 95%), хорошее охлаждение, удобство обслуживания.
«Вода на карбид» по принципу «мокрого» процесса
Принцип работы оборудования заключается в периодической подаче воды на карбид, загруженный в реторту. Образовавшийся газ выходит в газосборную камеру, откуда через отборник поступает в шланг для сварки.
Преимущества аппаратов: надежность и простота конструкции. Минусы:
- возможность перегрева ацетилена из-за малого количества воды;
- неполное разложение карбида;
- небольшая производительность.
«Вода на карбид» по принципу «сухого» процесса
В барабан генератора подается карбид и поступает вода, количество которой в два раза превышает необходимое для полного распада карбида. Благодаря высокой температуре лишняя вода испаряется. Гашеная известь через решетчатые стенки опускается вниз и выводится за пределы агрегата. Известь из-за испарения воды получается сухой, поэтому процесс получил такое название. Образовавшийся ацетилен подается в сварочный шланг через отборник.
Преимущества процесса: простота обслуживания оборудования и удаления извести. На таком принципе основана работа стационарных генераторов среднего уровня производительности.
Газы-заменители ацетилена
Для сварки металлов может использоваться не только ацетилен, но и другие газы, а также пары горючих жидкостей.
Определение!
Для сварки металлов и сплавов могут применяться газы, которые способны давать температуру пламени, в два раза превышающую Tпл обрабатываемых материалов.
Газы-заменители, производимые в промышленных масштабах, как правило, дешевле ацетилена и просты в приобретении, поэтому способны значительно снизить стоимость и упростить сварочные работы. Но, по сравнению с ацетиленом, все они имеют более низкую температуру сгорания. Поэтому их применение обычно ограничивается областями, в которых слишком высокая температура пламени не требуется:
- сварка легкоплавких цветных металлов (алюминия и магния), их сплавов, свинца;
- высоко- и низкотемпературная пайка;
- поверхностная закалка;
- сварка тонколистового стального проката;
- поверхностная и разделительная кислородная резка.
Особенно широко газы-заменители применимы в ходе кислородной резки, при которой температура пламени не сказывается на качестве процесса, а только определяет время предварительного прогрева материала.
Могут ли для газосварки использоваться пропан и метан?
Эти газы могут применяться для сварки, но только при условии дополнительного использования кремний- и марганецсодержащей проволоки. Кремний и марганец выполняют роль раскислителей. При сварке чугуна и цветных металлов этими газами необходимо применять флюсы.
Какая сварочная проволока применяется для газовой сварки?
Для сварки в качестве присадочных материалов применяют обычно проволоку, прутки и гранулы с химическим составом, аналогичным свариваемому металлу. Их температура плавления должна быть равна или ниже, по сравнению с обрабатываемым материалом. Поверхность проволоки – чистая, без ржавчины, масел, окалины. Проволока для газосварки и наплавки производится в соответствии с тем же стандартом, что и для дуговой сварки, – ГОСТом 2246.
Как поступить, если нет возможности достать сварочную проволоку требуемого состава?
Для работы с нержавеющей сталью, медью, латунью или свинцом в порядке исключения используют полоски из материалов такой же марки, как и свариваемый металл.
Как выбрать проволоку в соответствии со свариваемым материалом и эксплуатационным назначением изготавливаемой продукции?
- Для ответственных сварных металлоконструкций и изделий рекомендуется применять марганцевую и кремнемарганцевую проволоку: Св-08ГА, Св-10Г2, Св-08ГС, Св-08Г2С.
- Для низколегированных марок используют низколегированную проволоку, содержащую хром.
- Для чугуна предназначаются прутки, выпускаемые по ГОСТу 2671. Они делятся на марку А, востребованную для горячей сварки с общим предварительным подогревом изделия, и Б – для сварки с местным подогревом. Марки НЧ-1 и НЧ-2 используют для низкотемпературной газосварки литых элементов.
- Для сварки алюминия и сплавов на его основе предназначена проволока, соответствующая ГОСТу 7871: Св-А1, Св-АМц, Св-АК-5, Св-АМг.
- Для меди и ее сплавов выпускается присадочная проволока, регламентируемая ГОСТом 16130 (М1, МСр1), или прутки М1р и М3р.
Назначение флюсов для газовой сварки
При нагревании во время сварочного процесса медь, алюминий, магний и сплавы на их основе интенсивно взаимодействуют с кислородом воздуха или сварочного пламени. В результате на металлической поверхности образуются оксиды, температура плавления которых превышает температуру плавления основного металла. Оксидная пленка значительно усложняет сварку.
Предотвратить появление поверхностных оксидных пленок помогают специальные пасты или порошки, то есть флюсы. Эти составы наносятся предварительно на кромки свариваемых элементов и сварочную проволоку (прутки). При нагреве флюсы образуют легкоплавкие шлаки, предотвращающие образование тугоплавких оксидов.
Функции флюсов выполняют: прокаленная бура, борная кислота, оксиды и соли лития, бария, калия, фтора, натрия и другие. Вид состава определяется свойствами свариваемого металла. База флюса для кислородной резки – железный порошок.
Флюсы также могут использоваться для специальных легированных сталей и чугуна.
Для обычных «черных» сталей не применяются.
Источник: https://navigator-beton.ru/articles/gazovaya-svarka.html
Какой защитный газ использовать при сварке и резке: выбор и особенности | Тиберис
Работники авторемонтных мастерских, монтажники и другие специалисты по сварочным работам в ходе сварки нередко применяют природный газ и разнообразные газовые смеси. О том, какие бывают газы, об их особенностях и свойствах вы узнаете из нашей статьи. Мы приведем также рекомендации по выбору и использованию того или иного защитного газа при разных методах сварки и в зависимости от свариваемого материала.
Для чего нужны защитные газы при сварке и резке
Защитный газ является немаловажным компонентом, обеспечивающим производительность и достойное качество сварочного процесса.
Наименование защитного газа говорит само за себя, он нужен для защиты твердеющего расплавленного сварочного шва от окисления, а также от имеющейся в воздухе влаги и примесей, способных снизить устойчивость шва к коррозийным процессам, привести к возникновению пор и ослабить прочность шва, повлияв на геометрию сварного соединения. К тому же защитный газ охлаждает сварочный пистолет.
Какие типы газов для сварки и резки используются: их свойства и особенности применения
В качестве защитных газов, применяемых для сварки, используются инертные и активные газы, а также их смеси.
1. Инертные газы для сварки. Инертными именуются газы, которые не способны к химическим реакциям и практически не растворяются в металлах. Атомы таких газов наделены наружными электронными оболочками, заполненными электронами, чем и объясняется их химическая инертность. К ним относятся аргон, гелий и их смеси.
Аргон (Ar) — инертный газ, не вступающий в химические реакции с расплавленным металлом и иными газами в зоне горения дуги.
К достоинствам этого инертного газа относится то, что он на 38% тяжелее воздуха, аргон вытесняет его из зоны сварки и надежно изолирует сварочную ванну от контакта с атмосферой.
Чаще всего Ar применяется в качестве защитного газа в процессе аргонодуговой TIG сварки, MIG/MAG сварки. Примеры свариваемых металлов при помощи аргона и особенности применения приведены ниже в таблице 1.
Аргон как защитный газ востребован:
- в строительстве и машиностроении (при сварке деталей из высоколегированной стали; оперативная резка металлов, включая и толстые листы тугоплавких металлов);
- в горнодобывающей промышленности и металлургии (выплавка металлов; удаление газовых включений из жидкой стали).
Гелий (He) как и Ar является химически инертным, но отличается от него тем, что гораздо легче воздуха, что делает защиту сварочной ванны более сложным процессом, требующим больших затрат защитного газа.
Гелий применяется как инертный защитный газ в ходе сварки нержавеющих сталей, цветных металлов и сплавов, активных и химически чистых материалов. Он обеспечивает повышенное проплавление, в связи с чем, иногда используется с целью проплавления толстых металлических листов или получения шва специальной формы.
Но из-за повышенного расхода и высокой стоимости гелия в сравнении с аргоном сфера его применения достаточно ограничена.
Гелий (He) как защитный газ используется:
- при сварке нержавеющих сталей, цветных металлов и сплавов, химически чистых и активных материалов.
1.1. Инертные газовые смеси включают обычно аргон и гелий. Имея большую плотность, чем гелий, такие смеси обеспечивают более надежную защиту металла сварочной ванны от воздуха.
Если необходимо сварить химически активные металлы часто применяют инертную смесь, содержащую 60—65 об. % He, 40-35 об. % Ar. Инертные газовые смеси заметно дороже чистого аргона, но обеспечивают более интенсивное выделение теплоты электрической дуги в месте сварки. Это является значимым при полуавтоматической сварке металлов, характеризующихся высокой теплопроводностью.
2. Активные газы для сварки. Это газы, обеспечивающие защиту сварки от доступа воздуха и при этом вступающие в химические реакции со свариваемым металлом или физически растворяющиеся в нем.
Углекислый газ (CO2) (двуокись углерода) является бесцветным не ядовитым газом, растворимым в воде, он тяжелее воздуха.
Газ углекислый для сварки не должен иметь минеральных масел, глицерина, сероводорода, соляной, серной и азотной кислоты, спирта, эфиров, аммиака, органических кислот и воды. Из-за редкости сварочной углекислоты 1 сорта для сварки применяется сварочная углекислота 2 сорта и пищевая углекислота.
Но, повышенное содержание водяных паров в такой углекислоте при сварке ведет к возникновению пор в швах и снижению пластических свойств сварного соединения.
В сварочном процессе может использоваться и твердая двуокись углерода, соответствующая ГОСТ 12162—66 двух марок — пищевая и техническая. При сварке низкоуглеродистых и низколегированных конструкционных сталей применяется так же газовая смесь углекислого газа с кислородом (СО2 + + О2). Используют смесь, которая включает 30 об. % кислорода. Смесь СО2 + О2 оказывает более интенсивное окисляющее действие на жидкий металл, в отличие от чистого углекислого газа.
Углекислый газ в качестве защитного применяется:
- в строительстве и машиностроении (электросварка; процессы тонкой заточки, холодная посадка частей машин)
Кислород (O) включен в газовые смеси СО2 + О2 и Аr + О2. Это бесцветный газ, не имеющий запаха, поддерживающий горение. В случае охлаждения до температуры -183 гр. Цельсия кислород превращается в подвижную жидкость голубого цвета, а при температуре -219 гр.
Цельсия замерзает. Кислород гарантирует очень широкий профиль сварного шва, характеризующийся неглубоким проплавлением, а также обеспечивает высокое тепловложение на металлической поверхности.
Кислородо-аргонные смеси отличаются особым профилем проплавления сварочного шва, напоминающим «шляпку гвоздя».
Кислород как защитный газ бывает необходим:
- в строительстве и машиностроении (кислородно-ацетиленовая газорезка и газосварка металлов, наплавка и напыление металлов, плазменный раскрой металлов)
Водород (H) не имеет цвета, запаха и является горючим газом. Водород не подходит для мартенситных или ферритных сталей из-за образования трещин, он может использоваться в концентрации от 30 до 40% с целью плазменной резки нержавеющей стали — для повышения мощности и уменьшения шлака.
- Водород нашел применение при атомно-водородной сварке.
Азот (N) — газ без цвета и запаха, который не горит и не поддерживает горение. В соответствии с ГОСТом 9293—59, азот бывает четырех сортов: электровакуумный, газообразный газообразный 1-го сорта, газообразный 2-го сорта и жидкий. Включение азота в этих сортах должно быть соответственно не менее об.%: 99,5; 99,9; 99 и 96. Главной примесью в каждом из них является кислород.
Азот в качестве защитного газа чаще всего используется:
2.1. Смеси инертных и активных газов все чаще используются в процессе сварки плавящимся электродом сталей различных классов по причине их технологических преимуществ. К ним относятся:
- высокая стабильность дуги, благоприятный характер переноса электродного металла через дугу,
- меньшая, если сравнивать с активными газами степень химического воздействия на металлическую поверхность сварочной ванны.
Добавка к аргону незначительного количества кислорода либо иного окислительного газа существенно увеличивает устойчивость горения дуги, и улучшает качество образования сварных соединений. Кислород в атмосфере дуги обеспечивает мелкокапельный перенос электродного металла.
Выбор газа для определенного типа свариваемого металла
Какой газ используется при сварке того или иного металла, один из самых часто встречаемых вопросов новичков в сварке на тематических форумах. Примеры применения разнообразных защитных газов и газовых смесей для сварки различных металлов приведены в таблице.
Свариваемый металл | Защитный газ, используемый при сварке | Особенности процесса сварки |
Углеродистая сталь | 75% Ar+25% CO2 | Большая скорость сварочного процесса без прожогов металла толщиной до 3 мм, минимум деформации и брызгообразования |
CO2 | Глубокое проплавление, большая скорость сварки | |
Нержавеющая сталь | 90% He,5% Ar+2,5% CO2 | Отсутствие окисления свариваемого металла и прожога, небольшая околошовная зона, |
Низколегированная сталь | 60-70% He+25-35% Ar+4,5% CO2 | Высокая ударная вязкость, минимальная реакционная способность, |
75% Ar+25% CO2 | Достаточная прочность, небольшое набрызгивание по контуру сварного соединения, высокая устойчивость дуги. | |
Алюминий и его сплавы | Ar | Стабильная дуга и отличная передача электродного материала в ходе сварочного процесса деталей толщ. до 25 мм |
35% Ar+65 % He | Большее тепловложение, в сравнении со сваркой чистым аргоном, улучшенная характеристика слияния, используется при сварке металла толщ. 25- 76 мм | |
25% Ar5 % He | Максимум тепловложения, незначительная пористость, используется при сварке металла более 76 мм | |
Магниевые сплавы | Ar | Безупречное качество шва (чистота) |
Нержавеющая сталь | Ar-1% O | Улучшенная стабильность дуги, хорошее слияние контура валика сварного шва, более жидкая управляемая сварочная ванна, минимальные прожоги при сварке тяжелых нержавеющих сталей |
Ar+2% O | Устойчивая дуга, слияние и скорость сварки, чем при содержании 1 % кислорода, используется для сваривания тонких нержавеющих сталей | |
Углеродистая сталь | Ar+1-5% O | Улучшенная стабильность дуги, отличное слияние контура валика сварного шва, более жидкая управляемая сварочная ванна, минимум прожогов, скорость сварки больше в сравнении со сваркой чистым аргоном |
Ar +3-10% | Красивый сварной шов, сварка только с позиционированием электрода, минимальное брызгообразование | |
Низколегированные стали | Ar+2% O | Незначительный риск прожога, прочность сварного шва |
Титан | Ar | Хорошая стабильность дуги |
Медь, никель и их сплавы | Ar | Отличается хорошим слиянием, уменьшенной текучестью металла, используется для сварки металла толщ. до 3 мм |
Ar+80-75% He | Характеризуется повышенным тепловложением | |
Медь, стали duplex | ||
N | Востребован для защиты корня шва. Уменьшает образование оксидных пленок в корне шва |
Грамотно определив тип защитного газа, вы обеспечите оперативность и качество сварки, а также гарантируете отличное сварное соединение и глубину проплавления, повысите надежность созданного шва и качество детали. Выбор подходящего защитного газа и его качество значительно влияют на расход сварочных материалов, труд исполнителя сварки и на исправление дефектов и итоговую обработку сварочного соединения.
Если у Вас имеются какие-либо вопросы по теме, рекомендуем найти самую актуальную информацию на нашем сайте, или напрямую обратиться к консультантам компании Тиберис.
Источник: https://tiberis.ru/stati/vybor-zashhitnogo-gaza-dlja-svarki
Что необходимо знать о газовой сварке
Сварка при помощи газа — соединение металлических деталей методом расплавления. Исторически это один из первых появившихся видов сварки. Технология была разработана еще в конце XIX века.
Впоследствии, с развитием технологий электрической сварки (дуговой и контактной), практическая ценность газовой несколько уменьшилась, особенно для соединения высокопрочных сталей. Но она до сих пор с успехом применяется для соединения чугунных, латунных, бронзовых деталей, для техники наплавления и во многих других случаях.
Сущность процесса
Сущность метода состоит в том, что высокотемпературное пламя сварочного газа нагревает кромки свариваемых деталей и часть присадочного материала (электродную часть).
Металл переходит в жидкое состояние, образуя так называемую сварочную ванну — область, защищенную пламенем и газовой средой, вытесняющей воздух. Расплавленный металл медленно остывает и затвердевает. Так формируется сварочный шов.
Используется смесь какого-либо горючего газа с чистым кислородом, играющим роль окислителя. Наиболее высокую температуру — от 3200 до 3400 градусов — дает газ ацетилен, получаемый непосредственно при сварке от химической реакции карбида кальция с обычной водой. На втором месте находится пропан — его температура горения может достигать 2800 °C.
Реже применяются:
- метан;
- водород;
- пары керосина;
- блаугаз.
У всех альтернативных газов и паров температура пламени существенно ниже, чем у ацетилена, поэтому сварка альтернативными газами практикуется реже, и только для цветных металлов — меди, латуни, бронзы и других, с небольшой температурой плавления.
У газовой сварки есть особенности по сравнению с электрической, которые формируют как ее недостатки, так и достоинства.
Достоинства и недостатки
Как и у любой вещи или явления, преимущества газовой сварки являются прямым отражением ее недостатков, и наоборот.
Основная характеристика газосварки — более низкая скорость нагрева оплавляемой зоны и более широкие границы этой зоны. В некоторых случаях это плюс, а в других — минус.
Это плюс, если нужно сварить детали из инструментальной стали, цветных металлов или чугуна. Для них требуется плавный нагрев и плавное охлаждение. Также существует ряд сталей специализированного назначения, для которых оптимален именно такой режим обработки.
К другим плюсам относится:
- невысокая сложность технологического процесса газовой сварки;
- доступность, адекватная стоимость оборудования;
- доступность газовой смеси либо карбида кальция;
- отсутствие необходимости в мощном источнике энергии;
- контроль мощности пламени;
- контроль вида пламени;
- возможность контроля режимов.
Основных минусов у газовой сварки четыре. Первый — именно низкая скорость нагрева и большое рассеивание тепла (сравнительно низкий КПД). Из-за этого практически невозможно сваривать металл толщиной свыше 5 мм.
Второй — слишком широкая зона термического влияния, то есть зона нагрева. Третий — себестоимость. Цена расходуемого ацетилена при газосварке выше, чем цена электроэнергии, затраченной на тот же объем работы.
Ее четвертый недостаток — слабый потенциал механизации. Из-за своего принципа действия фактически может быть реализована только ручная газовая сварка.
Полуавтоматический метод невозможен, автоматический — только с применением многопламенной горелки, и только при сварке тонкостенных труб либо иных резервуаров. Такой метод сложен и рентабелен лишь при производстве полых резервуаров из алюминия, чугуна либо некоторых их сплавов.
Нормативы
ГОСТ на газосварку — особый вопрос. В связи с тем, что качество шва при газовой сварке в большей степени зависит от мастерства сварщика, оно определяется субъективно.
Характер газосварочного процесса — исключительно ручной, конкретного ГОСТа на газовую сварку нет. Но существует ГОСТ 1460-2013 — на карбид кальция, из которого производится газ для сварки.
Кроме того, различными ГОСТами определяются такие параметры, как типы присадочной проволоки, давление в редукторе и баллоне, требования к генератору ацетилена. Существуют свои требования к типам применяемых шлангов и горелок, связанные с безопасностью работы.
Стандартный комплект оборудования
Для газовой сварки или резки (технологически более простой процесс) требуется оборудование. Прежде всего, это генератор ацетилена либо источник иного горючего газа (пропана, водорода, метана).Потребуется также Баллон с окислителем — кислородом, горелка, редуктор для сжатого газа (регулятор потока) и соединительные шланги.
Могут применяться различные вспомогательные устройства, например пьезозажигательный элемент, предохранительный водяной затвор для защиты от обратного пламени (в последнее время — практически обязательный элемент), и другие.
Отличительная особенность этого вида сварки — для него не требуется электропитание, поэтому работы можно производить практически в «полевых» условиях. Во многом из-за этого преимущества газовую сварку до сих пор активно используют.
Виды пламени
Одним из достоинств газосварки является возможность использования огня с разными химическими свойствами: окислительным, восстановительным, с повышенным содержанием ацетилена.
«Нормальным» считается восстановительное пламя, при котором металл окисляется с той же скоростью, что восстанавливается. Оно применяется в большинстве случаев. Для соединения деталей из бронзы и других сплавов с содержанием олова применяется только восстановительный огонь.
Окислительное пламя образуется при увеличении количества кислорода в газовой смеси. В некоторых случаях оно предпочтительно и даже необходимо, например, при соединении латуни и пайке твердым припоем.
Особое свойство окислительного пламени состоит в возможности увеличить скорость газовой сварки. Но при этом необходимо применять специальную присадку, содержащую раскислители — марганец и кремний.
Если использовать с окислительным пламенем в качестве присадочной проволоки тот же материал, что и в свариваемых деталях (за исключением латуни) — шов выйдет хрупким, с большим количеством пор и каверн.
Пламя с увеличенным содержанием горючего газа применяется для наплавки на какую-либо деталь другой детали из более твердого сплава, а также при варке деталей из чугуна и алюминия.
Технология и способы
Техника газовой сварки сильно зависит от специфики свариваемых металлов и сплавов, формы деталей, направления шва и других факторов.
Основное предназначение газосварки — обработка чугуна и цветных металлов, которые поддаются ей лучше, чем дуговой. Хуже всего «берет» она легированную сталь — из-за низкого коэффициента теплопередачи детали из нее сильно коробятся при варке газом.
Существует «правая» и «левая» методика газовой сварки. Есть также технология сварки валиком, ванночками и многослойная сварка.
«Правый» способ — это когда сварочное сопло ведут слева направо, а присадку подают вслед за движением огненной струи. Пламя при этом направлено на конец проволоки, так, что расплавленный состав — температура плавления присадки обычно ниже, чем у основного материала — ровно ложится в шов.
При «левом» способе газовой сварки — он считается основным — поступают наоборот. Горелка движется справа налево, присадка подается ей навстречу. Этот способ проще, но подходит только для тонких листов металла. Кроме того, при нем больше, чем при «правом», идет расход присадочной проволоки и горючего газа.
Сварка валиком — более трудоемкий способ, подходящий только для листового материала. Шов образуется в форме валика, но при этом качество шва очень высокое, без образования шлака, пор и воздушных лакун.
Сварка ванночками — способ, требующий от сварщика большого мастерства. При этом присадочная проволока укладывается в шов спиральным способом, проходя через разные участки пламени. Каждый новый виток спирали слегка перекрывает предыдущий. Способ хорошо подходит для соединения листов из низкоуглеродистых сталей.
Многослойная сварка — самый технологически сложный способ. Его основы — как бы наплавка одного слоя поверх следующего. При этом достигается идеальный прогрев всех нижележащих слоев. Главное — контролировать, чтобы стыки швов разных слоев не находились один под другим.
В каждом из этих видов газовой сварки могут использоваться, в зависимости от обрабатываемого металла, различные флюсы. Их задача состоит в том, чтобы защитить поверхность шва от образования окислов, нарушающих его качество.
Источник: https://svaring.com/welding/vidy/gazovaja-svarka
Выбираем сварочный защитный газ
Защитный газ играет наиважнейшую роль в процессе создания качественного сварного соединения для следующих видов сварки:
- MIG — Metal Inert Gas. Метод дуговой сварки в защитной среде инертного газа с помощью плавящегося электрода в виде стальной или иной проволоки в зависимости от типа соединяемого металла.
- MAG — Metal Active Gas. Так же, метод полуавтоматической сварки, но уже в среде активного газа.
- TIG — Tungsten Inert Gas. Технология дуговой сварки в среде инертного газа неплавящимся электродом.
Зачем нужен защитный газ в сварке?
Сварочная ванна подвержена негативному влиянию кислорода из атмосферы, который может ослабить коррозионную стойкость шва, снизить его прочность и привести к образованию пор. Поток газа заключает сварочную ванну в защитную оболочку, предохраняя от вредного внешнего воздействия атмосферного воздуха, тем самым защищая затвердевающий расплавленный сварной шов от окисления, а также от содержащихся в воздухе примесей и влаги.
Виды защитных газов.
Инертные. Вид газов, которые химически не взаимодействуют с нагретым металлом и не растворяются в нем. Предназначены для сварки алюминия, магния, сварки титана и их сплавов, склонных при нагреве к энергичному взаимодействию с кислородом, азотом и водородом.
Пример: Аргон, Гелий, Азот (только при сварке меди и медных сплавов).
Активные. Вступают в химическое взаимодействие со свариваемым металлом и растворяются в нем.
Пример: Углекислый Газ, Водород, Кислород, Азот.
Бесцветный, неядовитый, взрывобезопасный газ без вкуса и запаха. Обычно используются для аргонодуговой TIG сварки для всех материалов и MIG сварки цветных металлов, например алюминий. Аргон химически инертен, что делает его пригодным для сварки химически активных и тугоплавких металлов. Этот газ имеет низкую теплопроводность и потенциал ионизации, что приводит к низкой передаче тепла на внешнюю область сварочной дуги. В результате формируется узкий столб дуги, который в свою очередь, создает традиционный для сварки в чистом аргоне профиль сварочного шва: глубокий и относительно узкий. Хранится и транспортируется в баллонах серого цвета с зеленой надписью. |
Легче воздуха, без запаха, цвета, вкуса, не ядовит. Является одноатомным инертным газом. Чаще всего используется для аргонодуговой TIG сварки цветных металлов и для сварки в потолочном положении. Имеет высокую проводимость тепла и потенциал ионизации. При сварке гелием профиль сварочного шва получается широким, хорошо смочен по краю и с довольно высоким тепловложением. Благодаря этим особенностям его чаще всего используется в качестве добавок к аргону и применяется для сваривания химически чистых или активных металлов, алюминиевых или магниевых сплавов, для обеспечения большой глубины проплавления. Хранится и транспортируется в коричневых баллонах с белой надписью. |
Углекислый газ обеспечивает довольно глубокое проплавление, поэтому популярен при сварке толстого металла.К недостаткам сварки в среде углекислого газа относится менее стабильная сварочная дуга, приводящая к большому образованию брызг. Также его возможна работа только на короткой дуге. Обычно используется для полуавтоматической MAG сварки короткой дугой и MAG сварки порошковой проволокой. Хранится и транспортируется в баллонах черного цвета с желтой надписью. |
Сварочные газы, используемые как компоненты сварочной смеси газов:
Смеси газов имеют более высокие технологические показатели, чем чистые газы. При применении их в сварочном процессе мы получаем: мелкокапельный перенос жидкого металла, формирование качественного шва, уменьшение потерь на разбрызгивание.
Кислород — двухатомный, активный защитный газ. Обычно используется для MIG MAG сварки как один из компонентов сварочной смеси, в концентрации менее 10%. Кислород обеспечивает очень широкий профиль сварочного шва с неглубоким проплавлением и высокое тепловложение на поверхности металла. Кислородо-аргонные смеси обладают характерным профилем проплавления сварочного шва в виде «шляпки гвоздя». Кислород также используется в тройных смесях с СО2 и аргоном, где он обеспечивает хорошую смачиваемость и преимущества струйного переноса. Хранится и транспортируется в баллонах голубого цвета с черной надписью. |
Водород — двухатомный, активный газ. Применяется при сварке аустенитной нержавеющей стали для удаления оксида и повышения тепловложения. В результате получается широкий сварочный шов с увеличенным проплавлением.Концентрация в сварочной смеси обычно не более 10%, а при плазменной резке нержавеющей стали от 30 до 40%. Хранится и транспортируется в баллонах зеленого цвета с красной надписью. |
Азот используется реже всего для защитных целей сварочной ванны. Он, в основном, используется для того, чтобы повысить коррозионную стойкость в дуплексных сталях. Хранится и транспортируется в баллонах черного цвета с желтой надписью. |
Сварочные смеси газов:
Отличаются от химически чистых газов более высокими технологическими показателями. Позволяют получить мелкокапельный перенос жидкого металла, формируют более качественный шов и уменьшает потери на разбрызгивание. При помощи сочетания сварочных газов можно добиться увеличения производительности процесса сварки, увеличить глубину проплавления, стабилизировать электрическую дугу, повысить качество сварного соединения.
Сварка TIG | Сварка MIG/MAG | |||||
Сварочный газ или смесь | сталь | нерж. сталь | алюминий | сталь | нерж. сталь | алюминий |
Аргон (Ar) | + | + | + | + | ||
Гелий (He) | + | |||||
Углекислый газ (СО2) | + | |||||
Смесь Ar/ СО2 | + | + | ||||
Смесь Ar/ О2 | + | + | ||||
Смесь Ar/ He | + | + | + | + | ||
Смесь Ar/ СО2/ О2 | + | |||||
Смесь Ar/ H2 | + | |||||
Смесь He/ Ar/ СО2 | + | |||||
Смесь Ar/ He/ СО2 | + | + |
Стоимость сварочного газа на фоне общей стоимости сварочных работ:
Не нужно недооценивать сварочный газ, уделяя внимание исключительно оборудованию. Если тщательно подойти к вопросу правильного подбора нужного защитного газа, то это повлияет не только на качество сварного соединения и его геометрию, но и поможет избежать расходов на исправление дефектов и обработку конечного шва. Так же выбор подходящего газа сказывается на расходе сварочных материалов за счет снижения разбрызгивания.
Источник: https://svarbi.ru/articles/vybiraem-svarochnyy-zashchitnyy-gaz/
Особенности газовой сварки
Существуют разные способы соединения металлических деталей. Наиболее эффективной технологией является термообработка, включающая несколько методов. Одним из популярных считается газовая сварка.
Газовая сварка металлической трубы
Суть процесса
Суть способа газовой сварки заключается в том, что через специальное сопло на рабочие поверхности подаётся раскалённая струя газа. Она нагревает кромки деталей до критических температур, плавит присадочный материал, который закрепляется на сопле или подаётся на место нагрева с другой стороны.
Газ вытесняет воздух с места разогрева. Поэтому не образуется оксидной плёнки. Постепенно металл остывает, детали объединяются воедино. Перед проведением работ, необходимо научиться выбирать газы для сварки:
- Наиболее популярная смесь — кислород с ацетиленом.
- Пропан с кислородом.
- Водород с кислородом.
- Метан с кислородом.
Для сварки металлических деталей можно использовать любой горючий газ с добавлением кислорода. Однако лучшим вариантом является ацетилен. Связано это с рабочей температурой, которую может обеспечить этот газ — до 3400 градусов по Цельсию. У пропана этот показатель доходит до 2800 градусов.
Область применения
Чтобы понимать, где применяется технология термического соединения металлов, требуется разобраться с тем, какие материалы можно сваривать этим способом:
- Тонкие листы стали, жести (до 5 мм).
- Чугун.
- Цветные металлы.
- Инструментальная сталь.
Технология и способы газовой сварки
Прежде чем начинать проведение сварочных работ, требуется подготовить рабочие поверхности. Они зачищаются от ржавчины, грязи, налёта. Далее мастеру нужно выбрать технологию газовой сварки. Каждый из отдельных методов имеет определённые особенности выполнения. Способы газовой сварки:
- Левый способ. Применяется при работе с цветными металлами, легкоплавкими сплавами. Сопло должно перемещаться справа налево.
- Правый способ. Применяется для легкоплавких металлов. Присадочную проволоку требуется двигать вслед за пламенем.
- Сквозной валик. Изначально необходимо закрепить листы металла вертикально зазору. Горелкой оплавить кромки. После того как получится отверстие, расплавить его со всех сторон, чтобы получился шов.
- Многослойная сварка. Чтобы сделать качественный шов, понадобится затратить большое количество газа.
- Соединение ванночками. Этот метод применяется для закрепления уголков или соединения стыков металлических листов. Важно, чтобы толщина заготовок не превышала 3 мм.
Важно ответственно относится к выбору рабочей смеси. Это может быть смесь кислорода с:
- Метаном.
- Пропаном.
- Ацетиленом.
- Водородом.
Чтобы варить металлические листы толщиною более 5 мм, необходимо использовать двойной валик. Горелка ведётся правым способом.
Оборудование
Виды оборудования для газовой сварки:
- Бензино-кислородные.
- Ацетилено-кислородные.
- Керосино-кислородные.
- Пропано-кислородные.
К другим ключевым элементам газосварочного аппарата относятся:
- Предохранительный затвор. Это деталь обеспечивает безопасность при работе.
- Баллоны для газов. По ГОСТу они должны быть покрашены в определённый цвет, зависимо от того, что находится внутри.
- Вентиль устанавливаемый на баллон. Должен изготавливаться из латуни.
- Редуктор — ключевой элемент оборудования. Обеспечивает надёжное соединение горелки с баллоном.
- Горелка для подачи рабочей смеси. Существует два вида — ацетиленовая, пропановая. Представляет собой рабочую часть оборудования, на которой располагаются вентили для регулировки подачи газов. Они смешиваются с помощью системы трубок, которые расположены на горелке.
На выходе с резака установлено сопло, через которое готовая смесь подаётся на рабочую поверхность.
Этапы сварки труб
После выбора газа для сварки сварщик должен подготовить оборудование, проверить работоспособность отдельных элементов. Далее начинается проведения работ. Техника газовой сварки представляет собой несколько этапов, которые должны идти последовательно:
- Подготовка рабочих поверхностей. Они размечаются, зачищаются от налёта, грязи, ржавчины.
- Начинать соединение отдельных металлических элементов необходимо прихватить их сварочным аппаратом.
- Выставить заготовки относительно друг друга. Дополнительно провести проверку точности. Начать равномерное нагревание рабочей частью оборудования. После нагрева до начала плавления, металла, резак нужно медленно передвигать по границам будущего шва, подавать в рабочую зону присадочный материал.
С помощью резака можно разделять металлические заготовки на части.
Зачистка металлической поверхности
Техника безопасности
Прежде чем начинать работать, важно изучить правила техники безопасности и придерживаться их:
- Не использовать оборудование рядом с легковоспламеняющимися веществами, жидкостями.
- Работать только в хорошо проветриваемом помещении. Если же здание не проветривается, делать перерывы во время работы, чтобы сварщик мог подышать свежим воздухом. Желательно использовать респиратор.
- Важно проверять чтобы элементы оборудования не были испачканы маслом.
- Для охлаждения сопла рядом должна находиться ёмкость с холодной водой.
- Подготавливать рабочую зону до начала сварки. Помехи при работе могут привести к травмам, браку заготовок.
- Использовать защитные очки, специальный сварочный костюм, перчатки.
До начала работ проверять насколько надёжно подключены соединяющие шланги. Не должно быть утечки газа.
Газовая сварка — востребованный способ термического соединения металлических деталей. Перед тем как начинать сварочные работы, требуется ознакомиться с особенностями технологического процесса, подготовить оборудование, свариваемые детали. Чтобы не навредить организму, важно соблюдать правила техники безопасности.
Газосварка первые шаги — Территория сварки
Газосварка для начинающих (нижнее положение шва)
Особенности газовой сварки Ссылка на основную публикацию
Источник: https://metalloy.ru/obrabotka/svarka/gazovaya
Газы используемые при газовой сварке
Газовая сварка — плавление кромок соединяемых деталей в высокотемпературном пламени горелки с формированием шва. Выбор газа для сварки зависит от множества факторов:
- соединяемого металла;
- желаемой формы шва;
- типа газового оборудования;
- условий работы;
- свойств химического состава;
- необходимой температуры плавления.
Давайте перечислим, какие газы используются в газовой сварке: это может быть ацетилен, МАФ, пропан, бутан, бензол, керосин, кислород, коксовый и углекислый газы и другие. Наиболее активно используется ацетилен, который при наличии кислорода дает температуру в 3 тысячи градусов.
Заменители ацетилена
К газам-заменителям С2Н2 относятся пропан и пропан-бутановая смесь, водород, коксовый газ, бензин, керосин. Они обладают достаточно высокими теплотворными способностями. Однако для качественной работы требуется больше кислорода, а t пламени при этом все равно ниже, чем у ацетилена. Поэтому пропан, бутан и другие варианты используются чаще при изготовлении металлоконструкций из цветных, легкоплавких металлов. Сталь соединить ими трудно.
Углекислый газ
Углекислый газ (СО2) имеет сильный запах и ярко выраженные окислительные свойства. Хорошо растворяется в воде и весит в полтора раза больше воздуха. Различают 3 сорта вещества, которые используются при соединении чугунных, углеродистых металлов и сплавов, коррозийных сталей и низколегированных конструкций.
Защитные элементы
При газовой сварке используются также инертные газы, которые служат защитой сварочной ванны от воздуха. Они не взаимодействуют с металлом и не растворяются в нем, у них нет цвета и запаха.
- Аргон. Негорючий, тяжелее воздуха в 1,5 раза. Высший сорт используется для аргонодуговой сварки активных, редких металлов и сплавов. Первый подходит для алюминиевых и стальных изделий.
- Гелий. Легче воздуха. Рекомендуется для газовой сварки чистых и активных металлов, а также алюминия и стали.
- Азот. Применяется для меди и сплавов из нее. Различают 4 сорта азота с разной долей содержания вещества.
Улучшают процесс и качество шва при изготовлении металлоконструкций сварочные смеси: гелий с аргоном, аргон с кислородом или/и углекислым газом-помощником и другие.
Источник: https://kra-ber.ru/gazy-ispolzuemye-pri-gazovoj-svarke/
Какой газ нужен для сварки полуавтоматом, выбор газа или смеси механизированной сварки
Сварочный полуавтомат повышает и качество шва, и скорость работы сварщика. Механизированная сварка не предполагает замену электродов — вместо прутков в таком аппарате используется проволока, подаваемая с катушки. Поэтому сварщику не приходиться разрывать шов, теряя время и нарушая герметичность соединения.
Кроме того, работа в полуавтоматическом режиме позволяет соединять заготовки толщиной от десятых долей миллиметра до нескольких сантиметров, причем конструкционным материалом соединяемых элементов может быть практически любой металл или сплав.
Однако эти преимущества невозможны без использования специального газа, защищающего сварочную ванну.
Какой газ нужен для механизированной сварки
Технология полуавтоматической сварки предполагает использование в качестве флюса активного и/или защитного газа. Первый меняет физико-химические характеристики шва, второй — защищает металл от окисления, что особенно актуально при соединении заготовок из алюминия или быстро окисляемых сплавов.
Типичными представителями инертной группы газов являются аргон (Аг) и гелий (Не). В активную группу входит азот (N), кислород (O) и углекислый газ (CO2). Самыми популярными смесями являются:
- аргоно-гелиевый состав (Аг + Не) — защитная среда, повышающая тепловую мощность дуги;
- аргоно-углекислый состав (Аг + СО2) — инетрно-активная среда, снижающая разбрызгивание электрода;
- аргоно-кислородная газовая смесь (Аг + О2) — инертно-активная среда для низколегированных и легированных сталей;
- углекисло-кислородная смесь (СО2 + О2) — активная среда, повышающая производительность полуавтомата.
Критерии выбора газа или смеси для полуавтомата
При выборе смеси или технически однородной среды принято обращать внимание на следующие критерии: тип конструкционного материала свариваемых заготовок, толщину формируемого шва, диаметр сварочной проволоки.
В итоге выбор смеси для сварочных работ сводится к изучению таблицы, в которой указаны составы, рекомендуемые для каждого металла или сплава, с учетом глубины сварочной ванны и других характеристик.
Кроме того, опытный сварщик учитывает «бонусный» эффект, который дает та или иная среда. Например, углекислые газы обеспечивают минимальное разбрызгивание присадочного металла (электрода), поэтому с их помощью удобно варить потолочные швы. В этом случае СО2 убережет сварщика от контакта с каплями расплавленного металла.
Технология сварки в полуавтоматическом режиме
Принцип работы сварочного полуавтомата основан на хорошо изученном электродуговом процессе. Разница потенциалов между электродом и заготовкой позволяет сформировать электрическую дугу, температуры которой хватит на расплавление присадочного и свариваемого металла. Застывшая присадка контактирует с металлом заготовки на атомарном уровне, образуя шов с прочностью до 90% от показателя основного конструкционного материала.
Однако в работе полуавтомата есть и свои особенности. Во-первых, проволока-электрод подается в зону сварочной ванны непрерывным потоком, проходя сквозь токопроводящий мундштук.
Причем расход присадочного металла можно регулировать вручную, нажимая на кнопку подачи. Во-вторых, вместо классического «твердого» флюса, образующего газовое облако при горении дуги, полуавтомат использует газовые смеси или технически чистые среды.
Причем подача газа осуществляется непрерывно, как до появления дуги, так и после ее разрыва.
Благодаря этому уменьшается количество брызг, стабилизируются параметры дуги, повышается производительность труда сварщика и снижается общая трудоемкость любого сварочного процесса.
Особенности выполнения сварки под газом
Техника работы на полуавтомате практически не отличаются от принципов применения классических сварочных аппаратов. С помощью полуавтомата можно варить горизонтальные и вертикальные швы, выполнять прихватывание заготовок, проваривать герметичные соединения, формировать сопряжение встык и внахлест.
Способ формирования швов полуавтоматическим сварочным аппаратом не отличается от классических методик, реализуемых с помощью ММА-оборудования. Температурные режимы и сила сварочного тока определяется по общепринятой схеме — исходя из толщины стыков и диаметра электрода.
Единственной индивидуальной особенностью, которой обладает полуавтоматический газосварочный процесс, является простота соединения тонких заготовок. Поэтому полуавтомат используется преимущественно в кузовном ремонте и во время сборки тонколистовых металлоконструкций.
Основные преимущества сварки с газовой защитой
- Узкая зона высокотемпературного воздействия, поэтому MIG-MAG процессы не меняют свойства свариваемых металлов.
- Отсутствие задымления в зоне сварочной ванны, что облегчает визуальный контроль качества шва.
- Универсальность применения — MIG-MAG процессы совместимы с любыми металлами: от титана или алюминия до высоколегированной или конструкционной стали.
- Отсутствие ограничений по пространственному положению детали — отрегулировав напор горелки, можно варить потолочные или наклонные швы, не испытывая никаких затруднений.
- Нет ограничений по толщине — эта технология допускает сваривание листовых заготовок с толщиной от 0,2-0,5 миллиметра. Верхняя граница толщины шва определяется только мастерством сварщика.
- Отсутствие необходимости зачищать швы даже при многослойной наплавке — флюс улетучивается после прекращения подачи смеси из горелки.
- Максимально возможная производительность труда даже при средней квалификации сварщика.
Все эти преимущества станут доступны только в случае поставки качественной смеси, подготовленной по ГОСТ и ТУ.
Некачественные составы приведут к потере прочностных характеристик.
ООО «ИТЦ Промэксервис» готово предоставить заказчику высококачественный газ для сварки полуавтоматом, в любых объемах, с доставкой по Москве или Подмосковью. Мы работаем с крупными компаниями и физическими лицами, предлагая высокое качество и низкие цены. ИТЦ Промэксервис — лидер рынка технических газов с 1999 года.
Источник: https://itc-pex.ru/info/articles/gaz-dlya-svarki-poluavtomatom/
Сварочный газ: какой бывает, где применяется, особенности использования, плюсы и минусы
Начинающие сварщики, как правило, стараются использовать простые методы сваривания. Большинство пользуется ручной дуговой сваркой.
Для большинства ремонтных работ или изготовления несложных деталей этого достаточно. Однако рано или поздно вам захочется попробовать что-то новое и повысить свою квалификацию.
Следующим шагом после ручной сварки может быть сварка с использованием полуавтоматического оборудования. При таком методе для защиты свариваемых поверхностей от окисления используется защитный газ.
Ниже вы узнаете, какой именно, и как его использовать для сварочных работ.
Сварочный газ
В полуавтоматической сварке используются инертные газы, такие как аргон, гелий, углекислота. Реже используют водород, азот и кислород. Подается он в баллонах различного объема.
Чаще всего встречается объем 40 литров. Газ при сваривании образует защитную зону, которая защищает дугу от воздействия атмосферы, а свариваемые поверхности от окисления и пор. Шов при его использовании получается ровным и качественным.
Опытные сварщики знают рецепты смесей, использование которых позволяет использовать преимущества каждого из газов, составляющих данную смесь.
Характеристики
Остановимся подробнее на различных видах газообразных веществ, используемых для сварочных работ.
Чаще всего используется для этих целей. Есть даже отдельный метод сварки, использующий его название – аргонодуговой. Инертный, без цвета и запаха, химически не активен к металлам и другим веществам. Намного тяжелее воздуха, за счет этого создает надежно защищенную зону в области сварки.
По популярности идет вторым. Также является инертным, однако, в отличие от аргона, гелий легче воздуха. В связи с этим, расходуется его намного больше.
Учитывая, что его стоимость заметно выше, чем у аргона, это является существенным недостатком. Однако это не мешает его частому применению.
Особенно широко он применяется при работе с металлами, покрытыми окисной пленкой. Это такие металлы, как нержавейка, алюминий и т.д. Металлы при использовании гелия плавятся равномерно, что особенно важно при сваривании деталей большой толщины.
Кроме чистых гелия и аргона часто применяются смеси. Самая распространенная пропорция – 60% гелия и 40% аргона.
Смесь достаточно дорогая, однако с ее помощью можно качественно сваривать материалы с высокой теплопроводностью. Риск прожечь металл намного уменьшается.
Бесцветный, тяжелее воздуха. За счет этого надежно защищает область сварки. Бывает двух категорий. Рекомендована к применению первая категория, однако, за счет ее стоимости и дефицитности, чаще обращают внимание на вторую категорию. Большой минус углекислоты второй категории – наличие в составе водяных паров. При использовании может вызвать образование пор в металле. Проблемы можно избежать, добавив в углекислоту некоторое количество аргона.
Не применяется в чистом виде, так как вызывает окисление поверхности, что негативно влияет на качество шва. Обычно добавляется к смесям при необходимости получить широкий и неглубокий шов.
Не имеет цвета и запаха. Обычно применяется для плазменной резки нержавеющей стали, позволяя добиться очень хороших результатов. При сваривании других металлов может вызвать образование дефектов, например, трещин. Требует повышенного внимания к соблюдению правил техники безопасности за счет повышенной горючести.
Также без цвета и запаха, не горючий. Используется в жидком и газообразном виде. Область применения также узкая, используется, в основном, только при сваривании меди. При сварке других металлов может негативно влиять на прочность шва.
Выбираем газ для сварки
Чтобы вам было легче выбрать нужный газ для сварочных работ, представляем вам таблицу соответствия.
В заключение
Развивайтесь, экспериментируйте, пробуйте смеси с различными пропорциями, и вы увидите, как улучшается качество сварного шва.
Если нет желания экспериментировать – воспользуйтесь справочными материалами и подберите подходящий газ или смесь для ваших работ. Желаем вам успехов в работе!
Источник: https://prosvarku.info/rashodnye-materialy/svarochnyj-gaz